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Abstract 

 Excessive variability in behavioral performance and neuronal activation is a common finding in studies of 

schizophrenia. Recent evidence suggests that this may be due to an imbalance in the ratio of excitation to 

inhibition in brain function, or E/I imbalance. We used computational modeling of visual system activity to 

determine whether different potential causes of E/I imbalance would generate effects resembling those reported 

in schizophrenia. Three major findings emerged. First, reductions in retinal and lateral geniculate nucleus 

signaling initially led to increases in firing rate variability within the context of reduced V1 activation; however, 

with prolonged adaptation to weakened sensory signaling, compensatory hyper-activation in V1 neurons 

occurred, but variability was no longer increased. Second, direct increases in V1 excitation, or decreases in 

inhibition, led to the highest levels of initial activation but not variability; however, with prolonged inhibitory 

adaptation to increased excitation, overall activity was no longer elevated, but an increase in firing rate 

variability was observed. Third, the greatest fluctuation in firing rate variability, in response to the same stimulus 

across increasing contrast levels, was observed with reductions in sensory signaling, but only immediately after 

model perturbations; with prolonged adaption, the largest fluctuations were associated with increased excitation 

or reduced inhibition within V1. Implication of these findings are that  schizophrenia-related increases in 

neuronal response variability may arise from at least two sources: 1) weakened sensory signaling and its 

associated low signal-to-noise ratio; and 2) compensatory but incomplete inhibitory responses to continuous 

increases in cortical excitation. 
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Introduction 

 The visual system is an excellent system within 

which to characterize between-group differences in 

neural computations [1]. This is because computational 

theories of vision are well-established, the neural basis 

of early vision is well-understood, vision is the most 

studied area of neuroscience, and many of the neural 

computations involved in vision are found throughout 

the cortex but can arguably be isolated more easily 

when studying the occipital lobe [1-5].  

 People with schizophrenia demonstrate a wide 

range of visual processing impairments, ranging from 

altered retinal activity to disturbances in high-level visual 

cognition [3].  Nearly all past studies of these issues 

have focused on schizophrenia-control group differences 

in mean levels of behavioral performance or neural 

activation, with very little focused exploration of 

differences in indicators of systematic deviation from 

normal patterns of performance (e.g., range, standard 

deviation, skew, kurtosis, coefficient of variation).  

However, parameters related to variation can provide 

unique information about brain function [6-12]. To date, 

studies of schizophrenia that have focused on                 

within-task variability in behavioral or 

electrophysiological responses [e.g., [12, 13]] have 

explored consistency in those responses to identical 

stimuli, rather than deviation from an expected degree 

of variation across trials wherein a single parameter is 

systematically manipulated.  Because the degree to 

which stimulus intensity increases are associated with 

systematic neural activation increases can be taken as a 

measure of the precision with which stimulus differences 

are represented at the neural and perceptual levels, 

deviations from this rate can be expected to have 

perceptual consequences.  Therefore, our focus was on 

the degree to which deviation from normal levels of 

variability in firing rates, across a sequence of stimuli 

that increased in intensity along a single dimension, but 

also across V1 neurons in response to a single stimulus, 

would emerge in schizophrenia-relevant models. In the 

models we tested, we focused on parameters and values 

that were associated, in our prior computational 

modeling work [14], with good fits to previously 

published data on: 1) both reduced contrast sensitivity 

(CS) and broadened orientation (OR) tuning in chronic 

schizophrenia; and 2) excessive CS in first episode 

schizophrenia (FES) [3, 15, 16]. This was done to 

determine whether parameter manipulations associated 

with well-known visual processing impairments in 

schizophrenia would also be associated with an 

abnormal degree of deviance from expected activation 

values.  Of note, all parameter manipulations used 

involved an imbalance in the ratio of cortical excitation 

and inhibition, or E/I imbalance, which recently has been 

a focus in schizophrenia research, and is thought to be a 

cause of excessive within-task variability in people with 

the disorder [17-19].  With a focus on the coefficient of 

variation as the primary index of activation deviance, our 

results show that deviation from the normal range of 

firing rates is: 1) not a necessary consequence of either 

increases or decreases in overall mean activation; 2) a 

result of long-term adaptation to increased excitation; 

and 3) an initial, but not long-term result of weakened 

sensory input to visual cortex.  These data thus highlight 

the importance of viewing specific perceptual changes in 

schizophrenia within an illness-development perspective.  

Methods 

Modeling Environment 

 All models were run using the Topographica                

simulator [20-22], which is freely available at https://

github.com/ioam/topographica, with documentation at 

www.topographica.org. Topographica was developed for 

modeling the development of cortical maps, and has 

been typically used for computational modeling of 

aspects of low- and mid-level vision (e.g., orientation 

preference maps, orientation tuning, contrast sensitivity, 

aftereffects). 

Baseline Model Characteristics 

 For this project, we used as our baseline the 

GCAL (gain control, adaptation, laterally connected) 

model [[23], further described in [20-22]]. GCAL 

incorporates features that are biologically realistic, 

including: 1) gain control at the lateral geniculate 

nucleus (LGN) level; 2) homeostatic adaptation of V1 

responses based on a weighted sum of all inputs and 

limited by a logistic (sigmoid) nonlinearity; and 3) 

weights on excitatory and inhibitory lateral connections 

within V1, and on afferent connections to V1. These 

weights begin as isotropic (radially uniform), but 

subsequently modify in a self-organizing fashion upon 

repeated presentations of visual input and other forms of 

http://www.openaccesspub.org/
http://openaccesspub.org/
http://openaccesspub.org/journal/jsb
https://github.com/ioam/topographica
https://github.com/ioam/topographica
http://www.topographica.org


 

 

Freely Available  Online 

www.openaccesspub.org   JSB       CC-license       DOI :  COMING SOON                                                                       Vol-1 Issue 1 Pg. no.–  14  

neural activity (e.g., lateral interactions) according to 

Hebbian (unsupervised activity-dependent) learning, 

with divisive normalization. Other characteristics of             

the GCAL model include: the assumption of                              

single-compartment firing-rate neurons at the retinal 

ganglion cell, LGN, and V1 levels; hard-wired subcortical 

pathways to V1, including the main types of LGN 

neurons (e.g., On center-Off surround; Off center-On 

surround); roughly retinotopic projections from the 

retina to the LGN sheets to the V1 sheet; and separate 

parameters for excitatory and inhibitory activity (see 

Figure 1). GCAL has successfully modeled a wide range 

of phenomena expressed in a healthy V1, such as 

development of contrast-invariant orientation tuning and 

direction selectivity, development of ocular dominance, 

aftereffects, and surround suppression. Such modeling 

results show that these effects can be explained by a 

small number of canonical mechanisms [21, 24-27]. 

These demonstrations also indicate that through visual 

experience, the statistical regularities of the environment 

are learned and encoded via the competitive processes 

inherent to Hebbian learning, and that these processes 

are constrained by gain control and homeostatic 

mechanisms to prevent runaway neural excitation and 

excessive plasticity in frequently activated circuits. 

 The basic GCAL model has four levels or sheets, 

each of which is implemented as a two-dimensional 

array of firing-rate neurons: a retina (24 x 24 density), 

LGN On and Off channel sheets (24 x 24 density), and a 

V1 sheet (48 x 48 density) (see Figure 1). Here, ‘density’ 

represents the number of simulated units (neurons) per 

unit area of the indicated sheet, corresponding to a 

square portion of the simulated visual field. The retina 

and LGN sheets thus have ¼ the number of units per 

visual area as does the V1 sheet. As illustrated in Figure 

1, these four sheets are interconnected via sets of 

projections, or ‘connection fields,’ whose synaptic 

weights on the next sheet level are modifiable by 

Figure 1. Depiction of the sheets and connections in the GCAL class of models used in this study. 

Sheets include Retina, LGN On and LGN Off, and V1. Projections include afferent input to each of the 

LGN sheets, and afferent input to V1 from each of the LGN sheets, as well as lateral excitatory              

feedback within V1 (inner yellow circle) and a wider range of lateral inhibitory feedback within V1 

(outer yellow circle). Examples of the training stimuli used in each model (i.e., pairs of orientated 

Gaussians) can be seen in the Retina sheet, with corresponding transformations in the LGN and V1 

sheets. 
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Hebbian learning, and by changes in learning rates. Note 

that in GCAL models, the retina sheet is equivalent to 

the photoreceptor layer of the retina only. The model 

LGN sheet activity is an abstraction that represents all 

levels between the photoreceptors and the superficial 

layers of V1 that combine and transform the 

photoreceptor signals, including the retinal bipolar and 

ganglion cell layers and the LGN itself. 

 In all models presented here, activity was 

simulated in a series of time steps, with each 

corresponding to approximately 12.5 milliseconds in real 

time. At step 1 (t=0), the image reaches the retina, at 

step 2 the LGN On and Off sheets calculate their 

responses, at step 3 the output of the LGN On and Off 

sheets reaches the V1 sheet, and from steps 4 to 20 the 

activity within the V1 sheet propagates and settles 

through lateral inhibitory and excitatory connections. At 

the next step, the next stimulus is presented to the 

retina, and this repetition of sets of 20 steps continues 

for the number of iterations (i.e., stimulus presentation 

trials) chosen by the user.  

Model Parameter Manipulations 

 For this project, we, for the most part, limited 

manipulations to those that provided the best fit to 

published data in our prior study [14], to determine if 

the same manipulations that led to CS and OR tuning 

changes could also account for increased neural 

variability. The specific manipulations we examined, and 

a rationale for their use, are described below. 

 Changes in Input Strength: Several lines of 

evidence indicate that afferent input to the LGN is 

reduced in schizophrenia. First, schizophrenia is 

associated with reduced retinal photoreceptor and 

bipolar cell signaling as indicated by smaller flash 

electroretinogram (ERG) waveform amplitudes [28-33], 

and this change is more pronounced in patients at the 

outset of treatment for an acute psychotic episode than 

it is after several weeks of treatment. Preliminary data 

also indicate reduced activity in retinal ganglion                  

cells [29], whose axons form the optic nerve and 

synapse directly onto the LGN. Second, reduced retinal 

signaling could be expected to reduce the strength of 

LGN output and therefore the strength of signals 

reaching V1, and indeed, reduced amplitudes of visual 

evoked potentials (VEPs) have been repeatedly observed 

in schizophrenia, with evidence that the problem is more 

pronounced in unmedicated patients [reviewed in [34-

36]]. For this study, we examined V1 neural variability 

as a function of a 15% reduction in both retinal and LGN 

efferent signals. This manipulation led to compensatory 

hyperactivation in model V1 neurons in our prior 

modeling study [14], and provided a good fit to the 

increased CS seen in unmedicated first episode 

schizophrenia patients [reviewed in [3]].   

Changes in Excitation and Inhibition 

 Reduced lateral inhibition within V1. The 

strength of inhibition within V1 was reduced based on 

findings of reduced GABA concentration in the visual 

cortex of people with schizophrenia [37-39], as well as 

on findings of broadened OR tuning in cat after 

administration of the selective GABAA antagonist 

gabazine [40]. For the purposes of this study, a 10% 

reduction in V1 lateral inhibition strength was explored, 

as this change, in combination with an increase in the 

V1 afferent learning rate (see below, Changes in 

Plasticity) provided the best fit to published data on 

reduced CS and broadened OR tuning in chronic 

schizophrenia [14].  

 Increased lateral excitation within V1. Two 

sources of evidence suggest elevated local excitatory 

activity within V1. One is the similarity between                  

hyper-glutamatergic effects of ketamine administration 

in healthy volunteers and brain function in    

schizophrenia [41-43]. The second is evidence for 

elevated baseline gamma- and beta-band power and 

synchrony in people with schizophrenia [44-46], 

suggesting abnormal network formation. For the 

purposes of this study, a 10% increase in V1 lateral 

excitation strength was explored, to parallel the extent 

of changes in inhibition.   

Changes in Plasticity 

 Increased afferent learning rate at LGN-to-V1 

connections. This manipulation to the Hebbian learning 

rate was based on findings of reduced reliability in 

neuronal co-activation patterns in schizophrenia [47], 

and tighter coupling between thalamic and cortical 

sensory processing regions in schizophrenia compared to 

healthy controls [48]. This manipulation, in the form of a 

threefold increase in learning rate, was used only in 

combination with a 10% reduction in the V1 lateral 

inhibition rate, as this combination provided the best fit 

http://www.openaccesspub.org/
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to published data on reduced CS and broadened OR 

tuning in chronic schizophrenia in our prior study [14]. 

Model Function 

 We followed the model architecture and 

parameter settings from [23] except as specifically 

noted. Below, only the key algorithms related to 

activation, learning, and adaptation will be described, as 

these are most relevant to understanding the study’s 

schizophrenia-related parameter changes and findings 

relating to CS and OR tuning. These algorithms are the 

same as those described in [14]. 

 In GCAL, the activation value (i.e., firing rate) in 

each unit in the retina sheet is the brightness of that 

pixel in the training image. Training stimuli (i.e., those 

that the models were exposed to during their 20,000 

developmental iterations; see below Model Training and 

Development Strategy) were pairs of elongated 

Gaussians (see Figure 1). The center coordinates of 

each Gaussian were chosen from a random distribution, 

and the patterns covered an area that was calculated as 

1/3 larger than the V1 sheet lengthwise and heightwise. 

This ensured that all regions of the V1 sheet were 

equally likely to be stimulated during training.       

 For each unit at position j in the LGN On and Off 

sheets (O), activation at time t +δt was calculated as: 

 
 Where     = 14.0, set as a constant so that the 

overall strength of connections from the photoreceptor 

sheet to the LGN On and Off sheets will                       

produce activations within the range of 0.0 to 1.0;        

is the strength of feedforward contrast gain                            

control;           is the activation of unit i in the                          

two-dimensional array of neurons on the photoreceptor 

sheet from which LGN (On or Off) sheet unit j receives 

input (i.e., its afferent connection field Fj,P), and   is 

the activation in other units in the LGN (On or Off) sheet 

at the previous time step (received over the suppressive 

connection field Fj,S); f is a half-wave rectifying function 

that ensures that activation values of LGN On and Off 

sheet units are always positive; the constant k = .11 

ensures that output is always significant even for weak 

inputs;  is the fixed connection weight between 

retinal sheet unit i and LGN sheet j defined as a 

standard difference of Gaussian kernels (to ensure that 

an On sheet unit is activated only when there is both 

high center activity and low surround activity, and that 

an Off sheet unit is activated only when there is both 

low center activity and high surround activity) ([23], see 

equation 3 for further details about derivation of these 

weight values); and  represents the spatial profile 

of lateral inhibition received from other units in the same 

LGN sheet: these weights have a fixed, circular Gaussian 

profile (see [23], equation 4 for further details), and 

they have a divisive effect on LGN sheet activity that 

functions to implement contrast gain control.   

 For each unit (j) in the V1 sheet, activity is 

calculated as a function of the local connection field on 

and around j. The connection field (Fjp) consists of both 

incoming projections (p) from another (e.g., LGN) sheet 

(sp), and activity in the inhibitory and excitatory lateral 

connections to that unit. The total contribution (Cjp) to j 

from projection p from each projection type is a dot 

product of the input and the weights in each connection 

field, or: 

 

 

 Where is the activation in unit i reflecting all 

of the neurons in V1 of a single projection type with 

which unit j is connected, and  is the connection 

weight from unit i to unit j in V1 for each projection 

type. The contributions from each projection type are 

combined to calculate the activation of each neuron j in 

V1 at time t as follows: 

 

  

 In the baseline GCAL model, the strength of 

each projection type was set as follows: a  (afferent) = 

1.5, E (excitatory) = 1.7, and   I  (inhibitory) = -1.4. 

These values were shown to provide an appropriate 

balance between afferent and lateral influences, and 

between excitatory and inhibitory connections, and to 

lead to smooth and normally developing orientation and 

other topographic maps in the V1 sheet [23]. The 

variable f is a half-wave rectifying function to ensure 

positive activation values, and its threshold value (θ) 

varies as a function of the average activity of the unit, 

as part of implementing homeostasis (see below, next 
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two paragraphs). 

 From times t + 0.15 to t + 0.95 (i.e., steps 3 

through 20 after each stimulus presentation), activity 

settles in V1, as noted above. At the end of this settling 

process, the level of activation in each V1 unit j is used 

to update the activation threshold point θ (see below) of 

each unit and to update the afferent and lateral 

inhibitory weights using the standard Hebbian learning 

algorithm (see below). V1 activity is then reset to 0.0 

and a new stimulus is presented to the model.     

 The activation threshold θ determines how much 

a V1 unit will fire in response to an input. To determine 

the activation threshold for each V1 unit, a smoothed 

exponential average of its settled activity patterns is 

calculated: 

   

where the parameter , here set at 0.9999, 

determines the degree of smoothing in the calculation of 

the mean. The variable   is initially set to   a target 

average for V1 unit activity, which is set to (0)= μ  

= 0.024. The threshold value θ is then updated as 

follows: 

 

where  is set at 0.01 and is the homeostatic learning 

rate, or the rate at which the average activity in each V1 

unit is brought closer to the specified target value μ. If 

the mean activity level in a V1 unit begins to deviate 

from μ during model activity, the threshold θ is raised or 

lowered in order to bring the value back closer to μ.  

 As noted above, prior to any stimulus 

presentations to the model, connection weights from all 

projections to and within V1 (ωij,p) are roughly isotropic 

(radially uniform), with the constraint that weights for 

each type of projection are operative within different 

circular radii [(to enable, for example, a more narrow 

zone of lateral excitation surrounded by a larger zone 

where inhibitory effects operate, consistent with known 

cortical function [49, 50]]. Radii for GCAL, for afferent, 

lateral excitatory, and lateral inhibitory connections 

respectively were set to: rA=0.27, rE=0.1, and rI=0.23.    

 As stimuli are presented to the model, afferent 

connection weights from the LGN On and Off sheets are 

updated each time the V1 settling process is completed 

(i.e., every 20 steps, or once per iteration). The 

updating is based on a Hebbian learning rule, leading to 

the development of connection strengths that represent 

correlations between the LGN On and Off unit outputs 

and the postsynaptic V1 response. At each iteration, the 

weight adjustment is therefore dependent on three 

factors: presynaptic (LGN) activity (ηi), postsynaptic (V1) 

activity (ηj), and the Hebbian learning rate (α), with 

specific influences as follows: 

  

 

where for each V1 unit j, α is the Hebbian learning rate 

for the afferent projection.  Because unless Hebbian 

learning is constrained, it will lead to overly frequent 

changes in weight values and thus unstable network 

function [51], a constraint was added to impose divisive 

(postsynaptic) normalization on the V1 weight values. 

This well-understood mechanism  [52, 53] was 

implemented via the denominator in the equation 

immediately above. For the baseline GCAL model, 

learning rates for afferent projections, lateral excitatory 

projections, and lateral inhibitory projections were set 

respectively to αA=0.01, αE=0.00, and αI=0.03               

[as in [23]]. As noted below, in several cases in this 

study modifications were made to these learning rates to 

explore the potential contributions of reduced stability 

within V1 on CS and OR tuning in schizophrenia.     

Model Training and Development Strategy 

 For this study, we operationalized variability in 

three ways: 1) the spread of activation values (i.e., 

mean activation value of V1) across a large sequence of 

stimuli that varied only on a single dimension                     

(i.e., variation due to stimulus change); 2) variability in 

activity across V1 neurons in response to a single 

stimulus (i.e., variation due to differential neuronal 

feature selectivity); and 3) fluctuation in the variability 

observed in case 2, across different levels of contrast. 

For practical reasons, we do not report on variability in 

response to a sequence of an unvarying stimulus 

because, due to characteristics of Topographica, even 

with biologically excessive modifications to models of V1 

function, deviations from SDs of zero were uncommon 

and unreliable. On the other hand, reliable expansions or 

constrictions in firing rates were observed after selected 

manipulations when generating average responses 
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across V1 to a sequence of 1000 stimuli that 

systematically increased in contrast (i.e., case 1 above), 

when examining responses to neurons within a model 

V1 in response to a single stimulus (i.e., case 2 above), 

or when examining changes in variability within V1 

across the same basic stimulus at different levels of 

contrast (i.e., case 3 above).  Because response 

variability is often observed in psychiatric populations, 

including schizophrenia [10, 54], across trials that differ 

in stimulus characteristics, this approach is relevant to 

much published data and to clinical observations.  

 We also recognize that in many ways, a high 

level of variability in firing rates across neurons within a 

single region of cortex is desirable in that it can reflect 

reduced redundancy.  In the models we tested, 

however, we aimed to determine whether the specific 

manipulations we introduced would be associated with 

variability levels that were greater than normal, with 

normal being defined as the amount of variability 

previously demonstrated in published studies using the 

GCAL model in which multiple aspects of normal visual 

functioning were successfully simulated [14, 21, 23-27].  

We considered variability in excess of previously 

demonstrated normal levels to be pathological and to 

potentially be a cause of abnormal perception. This view 

is consistent with the ideas that precision in visual 

representation is the inverse of variability in sensory 

signals [55], and that excessive variability in brain 

activity in schizophrenia represents noise that is 

detrimental to efficient processing [56]. For example, 

activation of orientation-selective cells whose orientation 

preference is far from that of a visible stimulus would 

lead to both increased variability within the distribution 

of V1 cells, and to broadened orientation tuning, which 

could then impact processes that depend on precise 

representation of orientation, such as contour 

integration, motion discrimination, and facial emotion 

recognition, all of which are impaired in                

schizophrenia [3, 14]. It has also been demonstrated 

that both decreased and increased dopamine D1 

receptor stimulation causes less distinctiveness in 

representations of stimulus patterns, due to a higher 

than normal number of neurons being active in coding 

many patterns [7].  Similarly, while some degree of 

neural noise can aid in detecting initially subthreshold 

signals by amplifying them so they can cross the 

detection threshold, an excess of noise can impair 

detection [6, 8].   

 The basic model development strategy was the 

same as in [14]. This involved: 1) developing a model of 

normal visual system function by training it with 10,000 

pairs of stimuli (randomly-oriented Gaussians; see 

Figure 1); 2) making changes associated with a specific 

central nervous system (CNS) alteration (e.g., increased 

lateral excitation in V1; reduced retinal and LGN output, 

etc.) and running the model for another 10,000 

iterations to allow for long-term adaptation to the new 

state; and 3) presenting new testing stimuli (sine wave 

gratings; see Figure 2) and measuring: a) average 

activation and variability across V1 neurons during a 

Figure 2. Stimuli used for post-training testing: Left – low spatial frequency stimulus 

(frequency = 1.5 cycles per image); Right – medium spatial frequency stimulus (frequency 

= 6 cycles per image). 
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sequence of 1000 stimuli, b) variability within V1 

neurons in response to a single stimulus, or c) the 

fluctuation in variability within V1 neuron firing rates in 

response to a single stimulus as contrast is increased  

(in separate models). In addition, to examine variability 

after shorter-term CNS changes, we also developed a 

normal visual system model to 10,000, implemented 

CNS changes, and then immediately (i.e., without 

10,000 additional trials) presented new stimuli and 

measured activation and variability in the same three 

scenarios described above.  

 Post-development testing stimuli consisted of 

low or medium spatial frequency (SF) sine wave gratings 

(see Figure 2). For measurement of variability within a 

stimulus sequence, we used sequences of 1000 trials for 

each sine-wave stimulus, in which the contrast on each 

presentation increased by 0.001, starting at 0.000 and 

ending at 0.999, with contrast defined as the proportion 

of the possible input range [23]. For each sequence of 

1000 trials, data were collected on the mean and 

standard deviation (SD) of activity across all model V1 

neurons. From these data, we calculated the relative 

standard deviation or coefficient of variation (CV) which 

is the standard deviation divided by the mean [57, 58]. 

We used the CV as our primary measure of neuronal 

variability because while the SD typically increases as 

the mean increases [and so, increased variability can be 

secondary to increased activation in general [e.g., as in 

[9, 13]], the CV expresses variability independent of the 

mean, and so it is scale invariant. The CV can also be 

thought of as reflecting the volatility of observed values 

around an expected value.  This metric is commonly 

used to characterize stock market investments, where it 

provides investors with an estimate of the risk 

associated with a given investment over short-term 

intervals. For measurement of variability between 

different feature selective neurons in response to a 

single stimulus, the mean, SD, CV, and excess kurtosis 

values of activation levels across V1 sheet neurons in 

response to a single sine wave stimulus were generated. 

As with calculation of variability across stimulus 

transformations, CV was used as our primary measure of 

variability, with excess kurtosis used to represent 

excessive activation in orientation selective cells whose 

preference is far from that of the presented stimulus. 

Hypotheses 

Because increased excitatory activity can increase 

variability in neural network firing [56, 59], we expected 

that the greatest deviations from normal would arise 

from the manipulation that increased V1 activity to the 

greatest degree relative to unmodified models of V1 

function. In our prior study this was a 15% reduction in 

retinal and LGN efferent activity, which led to a 

compensatory hyper-activation in V1 neurons. Because 

this effect was found mainly with low, but not medium 

SF stimuli, we expected to observe the same pattern 

here in terms of CV values. On the other hand, since 

impaired tuning is thought to be associated with 

increased variability as well, we expected that the model 

that best fit chronic schizophrenia data on reduced CS 

and broadened OR tuning in our past study (i.e., a 10% 

reduction in V1 lateral inhibition along with a threefold 

increase in the afferent learning rate at LGN-V1 

connections [14]) would also be associated with an 

increased CV, in addition to an increase in excess 

kurtosis values, as previously observed.  

Results 

 Overall, findings were similar for both LSF and 

MSF stimuli, but were more pronounced for LSF stimuli. 

Therefore, results for LSF stimuli only are described 

below.  

Cross-stimuli Data (Variability Within a Stimulus 

Sequence) 

 Table 1, Row 1 demonstrates that when a 

normal V1 model is developed over 10,000 iterations, 

and then a CNS change is made, followed immediately 

by presentation of a sequence of 1000 stimuli with 

incrementally increasing contrast: 1) the highest level of 

activation (over double that observed in the unmodified 

model shown in Row 2, Column 1), and the largest SD 

are observed in the model with increased V1 lateral 

excitation; while 2) the weakest level of activation but 

the highest CV values are observed in the model with 

decreased retinal and LGN output. In contrast, Row 2 

demonstrates that when a normal model is developed 

over 10,000 iterations, and then a CNS change is made 

followed by 10,000 additional development trials in the 

new CNS state, followed by presentation of the same 

1000 trial stimulus sequence: 1) the models with either 

increased V1 lateral excitation or decreased V1 lateral 

inhibition generated the lowest levels of activation 

(owing to the development of compensatory inhibition) 

http://www.openaccesspub.org/
http://openaccesspub.org/
http://openaccesspub.org/journal/jsb


 

 

Freely Available  Online 

www.openaccesspub.org   JSB       CC-license       DOI :  COMING SOON                                                                       Vol-1 Issue 1 Pg. no.–  20  

Condition Unmodified 

10% ↑  V1               

Lateral                  

Excitation 

10% ↓  V1             

Lateral Inhibition 

10% ↓ V1 Lateral 

Inhibition and 3x 

V1   Afferent     

Learning Rate 

15% ↓ in               

Retinal and 

LGN Efferents 

After initial 10,000 

iterations 
.018|.010|.556 .040|.024|.600 .024|.015|.625 .024|.015|.625 .002|.002|1.00 

After a model 

change (except in 

next column) and 

then an  additional 

10,000  iterations 

.019|.011|.579 .007|.005|.714 .010|.007|.700 .010|.007|.700 .028|.015|.536 

Table 1. Activation and variability in models involving a 1000 trial run of the same LSF stimulus across 1000 levels 

of sequentially increasing contrast. Intra-cell structure is Mean | SD | CV. 

  
  

  
Condition 

Unmodified 
10% ↑ V1 Lat-

eral Excitation 

10% ↓ V1 Lat-

eral Inhibition 

10% ↓ V1 Lateral 

Inhibition and 3x 

V1 Afferent 

Learning Rate 

15% ↓ in Retinal 

and LGN Efferents 

After 10,000 

iterations 

.028|.064|2.28 
 9.49 

.063|.155|2.46 
12.07 

.038|.086|2.26 
 9.00 

.03|.086|2.26 
 9.00 

.005|.019|3.80 
 32.18 

After a model 

change (except 

in next column) 

and then an  

additional 

10,000 iterations 

.029|.068|2.34 
 11.39 

.012|.046|3.83 
 44.45 

.017|.053|3.12 
22.55 

.017|.050|2.94 
 27.87 

.041|.081|1.97 
 7.43 

Table 2. Activation and variability in models involving presentation of a single LSF test stimulus after model              

development. Intra-cell structure of each top line is Mean | SD | CV.  Bottom value in each cell is excess                   

kurtosis. 
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but the largest CV value; and 2) the model with 

decreased retinal and LGN output generated the highest 

level of activation (owing to compensatory activity in V1, 

replicating Silverstein et al. (2017)), but the lowest CV 

value. Findings from these two models suggest that in 

the earliest phase of schizophrenia-related CNS 

dysregulation (which may begin in the prodromal 

phase), increased deviance from the normal range of 

excitation is likely to be related both to excess excitatory 

activity, as well as to variability that is independent of 

mean activity level (as reflected in CV values) that 

results from weakened input to V1. In contrast, with 

adaptation to these changes, a reversal occurs in which 

increased excitation is compensated for by increased 

lateral inhibition which lowers overall activation but 

leads to large increases in variability in V1 firing rates, 

while at the same time reduced input to V1 is 

compensated for by increased activation in V1 neurons 

but with reduced variability. 

Single Trial Data (Variability Within V1)  

 Single trial data are presented in Table 2. Row 1 

demonstrates that when a normal V1 model is 

developed over 10,000 iterations, and then a CNS 

change is made, followed immediately by presentation 

of a single test stimulus: 1) the highest level of 

activation (over double that observed in the unmodified 

model shown in Row 2, Column 2), and the largest SD 

are observed in the model with increased V1 lateral 

excitation; while 2) the weakest level of activation but 

the highest CV and excess kurtosis values are observed 

in the model with decreased retinal and LGN output. In 

contrast, Row 3 demonstrates that when a normal 

model is developed over 10,000 iterations, and then a 

CNS change is made followed by 10,000 additional 

development trials in the new CNS state, followed by 

presentation of a single test stimulus: 1) the models 

with increased V1 lateral excitation or reduced V1 lateral 

inhibition generated the lowest levels of activation 

(owing to the development of inhibition) but the largest 

CV and excess kurtosis values; and 2) the model with 

decreased retinal and LGN output generated the highest 

level of activation [owing to compensatory activity in 

V1], but the lowest CV and excess kurtosis values (see 

Figures 3 and 4). Taken together, and similar to the 

cross-stimuli data reported in the paragraph above, data 

from these two models suggest that in the earliest phase 

of acute schizophrenia-related CNS dysregulation, 

increased variability is likely to be related both to excess 

excitatory activity, as well as to variability that is 

independent of mean activity level (as reflected in CV 

values) that results from weakened input to V1. In 

contrast, with adaptation to these changes, a reversal 

occurs in which increased excitation is compensated for 

by increased lateral inhibition which lowers overall 

activation but leads to large increases in variability in V1 

firing rates, while at the same time reduced input to V1 

is compensated for by increased activation in V1 

neurons but with reduced variability.  

Variability of CV Across Different Levels of Contrast 

 Data on CV values across a range of contrast 

levels (each multiplied by a factor of 2) from 20% to 

80% contrast are shown in Figure 5, for the case where 

the model was run normally for 10,000 trials, followed 

by a model change and then immediately by 

presentation of a single LSF test stimulus at one of the 

contrast levels.  It can be seen here that manipulations 

involving increased excitation or reduced inhibition 

generally follow the normal pattern of change in 

variability across contrast level. In fact, the overlap is so 

great among most conditions and the unmodified 

condition that most data series are occluded in the 

graph.  However, the clear deviant condition is the one 

with reduced retinal and LGN signaling.  No data point is 

plotted for 20% contrast in this condition because the 

mean was 0 and so the CV could not be defined.  

However, at 40% contrast (where there is excessive 

noise relative to the weak signal) the CV is excessively 

high, and it remains higher than in all other conditions 

even at 80% contrast, as noted above.   

 For the case where the model was run normally 

for 10,000 trials, followed by a model perturbation and 

then 10,000 additional trials in which the effects of the 

manipulation were increasingly manifested, see Figure 6.  

Here, where the system has adapted to reduced sensory 

input: 1) variability is lowest across all contrast levels in 

the condition of reduced retinal and LGN output,  and 

variability is highest in conditions with either increased 

excitation or reduced inhibition.   

Discussion 

 The purpose of this study was to examine the 

effects of E/I imbalance, or factors hypothesized to be 
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Figure 3. Combined activation and orientation preference maps (left column) and histograms showing activa-

tion of V1 neurons as a function of cell orientation preference (on x-axis, in radians) (right column). Data in 

both columns reflect activation in response to a single presentation of the LSF sine grating stimulus at 80% 

contrast (see Figure 2) after normal or abnormal model V1 development (see below). Each color in the maps 

in the left column corresponds to selectivity for the orientation denoted by the corresponding color in the key 

(D) at the bottom of this figure. Brightness corresponds to the firing rate of the neuron at a given location in 

the V1 sheet, which is retinotopic with respect to the LSF stimulus shown in Figure 2. In the histograms in the 

right column, the expected distribution peak for vertically oriented stimuli (see Figure 2) is π/2 or ~1.57 radi-

ans. A: Data for unmodified model after 20,000 iterations (same as in top row, Figure 4).  B: Data after 

10,000 normal development trials followed by 10,000 trials adapting to 10% increased V1 lateral excitation. 

This model is associated with the highest CV of all contrast ramp models (see Table 1). Note that the peak of 

the OR tuning histogram is not at the preferred orientation, which may account for some of the excess varia-

bility, in addition to the large drop from the peak to the tails, which is also asymmetrical. C: Data after 10,000 

normal development trials, followed by implementation of 10% increased V1 lateral excitation, and then by 

immediate presentation of the 1000-stimulus sequence. Note the high level of excitation in this model (before 

generalized inhibition effects arise). This model demonstrates the highest mean activation of all contrast ramp 

models (note change in Y axis values relative to other models), and the highest SD, but not the highest CV or 

excess kurtosis. The latter can be observed both in the smaller tails in the histogram, as well as in the blue-

green coloring in the activation map       indicating that the excess activation was for orientation selective 

cells signaling vertical or near-vertical orientations. As with the model data in Row 2, the peak of the OR his-

togram is again not at preferred orientation, but is close to it (and activation in other model neurons is rough-

ly symmetrical around it) with little activity at the tails, and less activity at the tails compared to the model 

after 20,000 developmental iterations. This increased drop in activation away from the peak can account for a 

portion of increased CV in this model. 

related to it, on deviations from normal levels of 

variability in V1 firing rates in response to visual stimuli 

in computational models of visual system function in 

schizophrenia. Our main findings can be summarized as 

follows: 1) Reductions in signaling of sensory 

information, at the level of the retina and LGN, initially 

led to increases in variability of firing rates within the 

context of reduced V1 activation; but 2) with prolonged 

adaptation to weakened sensory signaling, 

compensatory hyper-activation in V1 neurons was 

observed, and variability was no longer increased over 

that observed in an unmodified V1; 3) in contrast to the 

effects of reduced sensory signaling, direct increases in 

the level of V1 lateral excitation led to the highest levels 

of initial activation but not the largest increase in firing 

rate variability, while 4) with prolonged adaptation to 

increased V1 lateral excitation or reduced V1 inhibition, 

overall activity was no longer higher than in the 

unmodified model due to compensatory inhibition,                

but a large increase in variability in firing rates was 

observed; 5)  the patterns described above (in 1-4) were 

observed regardless of whether neural response 

variability was operationalized as differences between 

firing rates across V1 neurons in response to a single 

stimulus  or differences between the overall firing rates 

within V1 across a set of 1000 stimuli that systematically 

increased in contrast by values of 0.001; 6) Paralleling 

these results, the fluctuation in variability (across V1 

neurons) between 40% and 80% contrast levels in 

response to the same basic stimulus was largest in the 

condition of reduced sensory signaling when the 

stimulus was presented immediately after a 

manipulation to the model was made, but was lowest in 

this condition and highest in the condition of adaptation 

to increased V1 excitation when 10,000 trials were run 

after the manipulation but before presenting the test 
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Figure 4. Combined activation and orientation preference maps (left column) and histograms showing activa-

tion of V1 neurons as a function of cell orientation preference (on x-axis, in radians) (right column). Data in 

both columns reflect activation in response to a single presentation of the LSF sine grating stimulus at 80% 

contrast (see Figure 2) after normal or abnormal model V1 development (see below). Each color in the maps 

in the left column corresponds to selectivity for the orientation denoted by the corresponding color in the key 

(D) at the bottom of this figure. Brightness corresponds to the firing rate of the neuron at a given location in 

the V1 sheet, which is retinotopic with respect to the LSF stimulus shown in Figure 2. In the histograms in the 

right column, the expected distribution peak for vertically oriented stimuli (see Figure 2) is π/2 or ~1.57 radi-

ans. A: Data for unmodified model after 20,000 iterations (same as in top row, Figure 3).  B: Data after 

10,000 normal development trials followed by 10,000 trials adapting to 15% reduced retinal and LGN output. 
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There is a higher level of activation here compared to the unmodified model, but variability is equivalent. C: 

Data after 10,000 normal development trials, followed by implementation of 15% reduced retinal and LGN 

output, and then by immediate presentation of the LSF stimulus without additional trials adapting to the CNS 

alteration. There is a lower level of activation here than in the other models involving a single stimulus test 

presentation, but a higher excess kurtosis value, and the highest CV of models tested using a single test   

stimulus (see Table 2), which is partly a function of the largest decrease in activation between the peaks and 

tails of the distribution. Data from this model also reveal the clearest example of broadened OR tuning in that 

there are multiple peaks, and compensatory inhibitory suppression of activity in cells that would normally be 

most responsive to the stimulus (i.e., at 1.57 radians). Data from an unmodified model at 10,001 iterations 

are not shown as results are virtually identical to the unmodified model at 20,001 (see Table 2). 

Figure 5. Coefficient of variation (CV) values in different contrast conditions, as a 

function of parameter manipulation type, after 10,000 trials of normal development 

followed by a model manipulation and then immediately by a presentation of an 

LSF sine-wave stimulus. 
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Figure 6. Coefficient of variation (CV) values in different contrast conditions, as a func-

tion of parameter manipulation type, after 10,000 trials of normal development followed 

by a model manipulation and then 10,000 additional trials and then presentation of an 

LSF sine-wave stimulus. 
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stimulus; and 7) when measuring firing rates across V1 

neurons in response to a single stimulus, increased CV 

values were not a function of higher mean and SD 

values, but they were associated with increased excess 

kurtosis. This indicates that increased variability in 

neuronal firing rates is associated with increased 

activation in cells that normally do not respond as 

strongly to a specific stimulus, and therefore to reduced 

precision or broadened tuning.  

 While increased variability in firing rates was 

related to the lowest mean levels of activation in the 

models with direct and compensatory increases in 

excitation, it is important to note that higher CV values 

were not simply a function of lower mean values, and 

that CV and mean values are largely independent of 

each other, as can be seen in Tables 1 and 2.  Given 

that CV values are not a function of either increases or 

decreases in mean activation values, they can be seen 

as representing an index of variability that is                     

scale-invariant. We therefore recommend that future 

studies of schizophrenia and other psychiatric 

populations report on the CV in addition to reporting 

variability as a function of the standard deviation (as is 

typically done), since the latter may be strongly linked to 

overall level of activation. Another, related, advantage of 

the CV is that it can be used to directly compare 

variability across data sets, regardless of the phenomena 

being measured and their mean values. 

 One implication of the findings we report is that 

schizophrenia-related increases in firing rate variability 

(and therefore, in precision of stimulus processing) may 

arise from at least two causes: 1) a reduction in sensory 

input to cortex, prior to compensatory increases in 

excitation; and 2) inhibition secondary to increases in 

lateral excitation within V1 (which can also result from 

decreases in some forms of inhibition). The former is 

consistent with literature suggesting that some aspects 

of psychosis resemble effects of sensory deprivation [60, 

61]. In support of this, reduced photoreceptor signaling 

(ERG a-wave amplitude) was associated with more 

severe positive symptoms in acutely ill schizophrenia 

patients [28]. This hypothesis is also consistent with the 

view that reduced sensory signaling represents a 

condition wherein signal-to-noise ratio is, by definition, 

low, and where there is subsequently an increase in 

intra-network random activation [7], leading to both less 

consistent identification of a single stimulus, and less 

precise discrimination between multiple stimuli                    

(i.e., increased uncertainty). Such a situation, in which 

ineffective input to cortex was associated with increased 

noise and with increased neural variability in activity 

across stimulus conditions, has been observed in             

autism [11].  This view is also consistent with findings 

that increased variability is associated with flatter slopes 

in psychometric functions [62], and flatter psychometric 

functions have been observed many times in studies of 

perception in schizophrenia [15] [63-65]. The hypothesis 

that inhibition secondary to increases in lateral excitation 

within V1 is an additional cause of firing rate variability 

is consistent with NMDA receptor hypofunction leading 

to increased excitation [66, 67], and with evidence of 

increased baseline (i.e., pre-stimulus) gamma band [68] 

or beta-band  [46] activity in schizophrenia.  We further 

hypothesize that efforts to inhibit this state of excess 

excitation may result in an uneven or patchy pattern of 

E/I balance within an area of cortex (leading to 

increased variability in firing rates), especially if there 

are also impairments in GABA-ergic (inhibitory) 

signaling, which is another characteristic of 

schizophrenia [69-71].  All of these considerations 

suggest that increased firing rate variability, E/I 

imbalance, reduced neuronal tuning, and reduced signal-

to-noise ratios may share, in part, common variance and 

origins in schizophrenia.  

 The phenomenology that we have simulated in 

this paper is consistent with current formulations of 

neuronal processing in schizophrenia based upon 

predictive coding. In brief, the current understanding is 

that precision or confidence assigned to sensory 

prediction errors is too high [72]. This induces a 

compensatory rebalancing of precision at higher levels in 

cortical hierarchies - to produce positive symptoms like 

hallucinations and delusions. Such a scenario fits 

comfortably with the above account on several levels. 

First, a failure to attenuate visual precision is, 

physiologically, exactly what we have modelled in terms 

of increases in excitation. In neuro-biologically plausible 

versions of predictive coding, precision is mediated 

through gain control mechanisms (probably involving 

inhibitory interneurons and fast synchronous oscillations) 

that modulate lateral interactions; here, within V1. 

Furthermore, our results show the importance of the 
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compensatory adaptation to this primary 

pathophysiology; here, in terms of plasticity and 

increased response variability. This precision-based 

account also lends the excitation-inhibition balance a 

functional interpretation; where the balance or cortical 

excitability plays the role of a (Kalman) gain control 

mechanism that weights sensory evidence to a greater 

or lesser degree during perceptual synthesis. Finally, the 

ensuing changes in the precision of representations in 

the visual cortex can be related to the precision (i.e. the 

spread) of the tuning curves that we have simulated. On 

the other hand, the precision of representations per se 

corresponds to the (negative) entropy in information 

theoretic treatments of visual processing. 

 There are several important limitations to this 

study. First, our critical metric, the CV, expressed 

deviation from the mean firing rate in our models, as 

opposed to deviation from a slope or curve at a given 

degree of a parameter manipulation. On the other hand, 

the same findings regarding variability occurred whether 

we defined variability as differences in overall V1 firing 

rates to a sequence of stimuli that changed along one 

dimension (contrast), differences in individual neuron 

firing rates within V1 in response to a single stimulus, or 

as fluctuation in variability in within-V1 firing rates to a 

single stimulus across levels of contrast. Therefore, our 

findings appear to be robust even though it is unknown 

at this point whether our conclusions would also apply in 

the case of deviation from a slope or curve.  Moreover, a 

recent study in autism observed that an increase in level 

of variability across contrast levels was associated with 

reduced signal-to-noise ratio [11], which is consistent 

with our model findings regarding schizophrenia and 

reduced sensory signaling.  Another limitation is that, 

due to characteristics of the Topographica modeling 

environment, we could not generate results for the case 

in which variability was measured in response to a single 

repeating (identical) stimulus.  An additional limitation is 

that in humans, it is not currently possible to measure 

any of the types of variation in cell firing that we have 

discussed, and thus the application of our findings to 

people with schizophrenia remains in the realm of 

theoretical neurobiology. On the other hand, the findings 

generated in this study could be tested in animal models 

of schizophrenia using implanted electrodes. Of course, 

the major limitation of this study is that it used a 

computational model that, like all such models, is orders 

of magnitude simpler than the human brain, and so 

unable to capture a wide range of aspects of brain 

function. Finally, all GCAL models use feedforward and 

lateral connectivity only, whereas in the real brain there 

are backward or descending connections from V1 to LGN 

that we could not model. These are thought to play a 

predictive or contextualizing role and can have a 

profound effect on classical and  extra-classical receptive 

field properties in V1. Having said that, the lateral 

interactions within our model can, mathematically, 

'stand in' for recurrent effects.  

 In short, the computational modeling data 

presented here point to both reduced sensory signaling 

and adaptation to increased V1 lateral excitation (and to 

a lesser extent, reductions in V1 lateral inhibition) as 

contributors to increased neuronal firing rate variability 

in schizophrenia. Moreover, the two best fitting models 

also generated reduced precision in the form of 

broadened OR tuning, which can also be seen as a form 

of increased noise.  And, even with the qualifications 

noted above, the two models that generated clear 

increases in firing rate variability suggest interesting 

directions for future work. One direction is continued 

exploration of the role of abnormal sensory processing in 

generating abnormal cortical activity, including psychotic 

symptoms. A second is further study of the 

developmental relationships between increases and 

decreases in cortical activation, increases in firing rate 

variability, reduced precision, signal-to-noise ratio, and 

behavioral function across phases and stages of illness. 
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