

JOURNAL OF PLANT AND ANIMAL ECOLOGY

ISSN NO: 2637-6075

Research

DOI: 10.14302/issn.2637-6075.jpae-19-2586

The Effects of Zanzalacht on the Gonotrophic cycle of the Adult House fly Musca Domestica

Radwan E H^{1,*}, Youssef N S², Hashem H O², Shalaby A M²

¹Zoology department, Faculty of Science, Damanhour University, Egypt. ²Zoology department, Faculty of Science, Alexandria University, Egypt.

Abstract

Melia azedarach extract were applied by feeding the adult female flies on diets mixed with the extracts at different doses. The concentrations of *Melia azedarach* utilized were 1.8, 2.4 and 3.6% .The gonotrophic cycles of length of 90, 753, 67.6 and 84, 72, 68 hours were obtained after feeding at age 24 hours with diet mixed with doses of 1.8, 2.4 and 3.6% fruit extract; respectively. 98 & 96 hours were the length of gonotrophic cycle in the control groups. The length of 86.7, 72.3, 57.3 and 89.3, 75, 61 hours were obtained after feeding adults at age 48 hours with diets mixed with different doses of fruit extract of the same plant 97.3 and 98.7 hours were the length of the control groups. Proportions of the egg hatching reached 69, 55.3, 49 and 72.9, 64.2, 52 in groups of eggs obtained from 24 hours adults feeding with diets mixed with doses of 1.8, 2.4 and 3.6% fruit extract; respectively. Also 68.7, 53.3,48 5 and 81 2, 70, 56.3 were the proportions of egg hatching obtained from groups at age 48 hours after feeding with diets mixed with the same doses. 85, 77.6, 62.2 and 92.6, 88.9, 84.9 were the proportions of the egg hatching obtained from groups feeding with diets mixed with doses of 1.8, 2.4 and 3.6% fruit extract of *Melia azedarach*; respectively. The pupae showed larval-pupal intermediates which failed to complete the pupal period and died after emerging from the third larval instar.

Corresponding author: Radwan E H, Zoology department, Faculty of Science, Damanhour University, Egypt, Email: <u>dr eman hashem@yahoo.com</u>

Running title: Apodemus speciosus in industrial green space

Keywords: Environment-Musca domestica- habitat- Zanzalacht- Melia azedarach

Received: Jan 04, 2019 **Accepted**: Jan 29, 2019

Published: Feb 02, 2019

Editor: Narcisa Vrinceanu, Faculty of Engineering, "Lucian Blaga†University of Sibiu / 4 Emil Cioran Street, 550025 Sibiu, Romania.

Introduction

The house fly Musca vicina is one of the common species found in human habitat in tropical and subtropical regions. It has gained importance as a serious public health hazard. Serious world problems in public health have arisen as insects can develop resistance against insecticides [1]. The discovery of Melia azedarach as an insecticide of an entirely new type created guite a stir among entomologists interested in the practical uses of insect researches [2]. It was found of great value to study the effect of crude extracts of fruits of Zanzalacht on Musca vicina with the aim of investigating the effect of the Melia azedarach extract on the development capacities of the insect. The experiments stressed on the potential these plants have as effective and economic insecticides.

Jatwani and Srivastava [3]; Schmutterer [4] reported that the common species is *Melia azedarach* L as it contains six tetera-nortriterpenoids. Chiu [5] mentioned that the evaluation of the petroleum ether extracts of the seed kernels of *Melia azedarach* in the laboratory showed their potential as antifeedants for the control of the nymphs of *Nilaparvata legens*. The ethanol extract of the seed kernels of *Melia azedarach* inhibited feeding by 99.8% .The effect of azadirachtin and *Azadirachta indica* were similar to those of insect growth regulators against the immature stages of the house fly, *Musca domestica* [6].

Hashem and Youssef [7]; Radwan [8] observed the developmental changes induced by methanolic extract of leaves and fruits of Melia azedarach L. on the larvae of house fly Musca domestica vicina Macq. They noticed that the pupae and the adults displayed morphological abnormalities as well as pronounced anomalies. Heshem et al. [9] studied the effect of Melia azedarach extract on the larvae of Spodoptera littoralis and found that the fruit extract effectiveness depended on the age of the larvae, the concentration of the extract and the period of the treatment on the larval instars. The fruit extract-treatment of the chinaberry tree caused abnormalities in larvae and adults of the insect. Several studies dealt with the effect of azadirachtin on the mortality of different stages of insect species [10]. Azadirachtin increased the duration of the immature stages, length of pupal stages [11-13].

The effects of tri-terpenoid extracted from neem seed were similar to those of insect growth regulators against the immature stages of the house fly, Musca domestica [14]. Garcia et al. [15] claimed that the triterpenoid azadirachtin strongly interfere with the neuroendocrine control of insect hormone titers. Bidman et al. [16] studied the juvenilizing effect of azadirachtin by its injection into the first half of the last larval instar of the blowfly Calliphora vicina and found that it caused inhibited adult emergence. In adult insects, the effect of azadirachtin was a retardation of egg maturation [17]. They reported that the inhibition of oogenesis by azadirachtin is discussed on the basis of its interference with the neuroendocrine control of hormone synthesis. Mehrotra and Gujar [18] reported that topical application of 10 Mg azadirachtin reduced adult fecundity in Spodoptera litura. Crude neem oil extract was evaluated for their effect on different stages of three fly species, namely, Musca domestica, Haematobia exigua and Chrysomya megacephala, marked reductions in the hatchability of treated eggs of the three fly species were observed [19].

Material and Methods

Musca vicina in this study were all produced from a colony raised at the laboratory of the Department Zoology, Faculty of Science, and University of Alexandria. This colony was initiated by adult flies borrowed from the Entomology Department, Faculty of Agriculture, and University of Alexandria. The original colony of the Faculty of Agriculture was established since 1995 .The colony was raised in a constant room temperature maintained at $27 \pm 2^{\circ}$ C and $70 \pm 2^{\circ}$ RH. The adult flies were kept in breeding cages which were made of wooden frames measuring 38 x 30 x 30 cm. The sides and tops of those cages were fitted with mosquito-proof wire mesh. The front side, measuring 25 cm x 25 cm. had been fitted with a cloth sleeve protected with a wooden cover hinged to the cage. A Petri dish, 9 cm in diameter and 2.5 cm in height, containing a piece of cotton wool moderately soaked in diluted milk (3 volumes of milk added to 1 volume of water) was placed inside the cage to be replaced by fresh ones every 24 hours. The Petri dish was placed in the cage to provide diet for the adult flies. The female flies usually lay their eggs on the milk pads. The pads containing the eggs were transferred to two pound jam

jars containing fresh milk pads to provide food for the newly hatched larvae. The jars were tightly covered with finely perforated tin lids. The fruits and leaves were washed in running tap water and after drying them up in the air for several days they were put in an oven at 60°C to constant weight and then pulverized by means of a hummer mill. Extraction was conducted in a 250 ml Soxhlet apparatus using methanol as a solvent. The extraction period lasted a total of 20 hours over a course of four days until the chinaberry leaves and fruits became colorless .At the end of the extraction process the resulting solution was put in a porcelain dish and placed in an oven (37°C) for evaporation of the solvent from the obtained solution. After removal of the methanol from the elute it is concentrated to a volume of approximately 25 ml of dark green oil. The crushed chinaberry fruit (160 gm) finally produced 40 ml of thick brown oily extract .The thick crude extracts (from the leaves and fruit) were preserved in tightly capped dark glass, vials and stored in the freezer until used for tests. Statistical analysis Data were subjected to student's T-test and least significant difference (LSD) test [20].

Results

The feeding experiments were conducted with the aim of demonstrating the effect of Zanzalacht (*Melia azedarach*) extraction at different concentrations on the gonotrophic cycle of the adult female *Musca vicina*. Two parameters have been taken into account while studying the effect of the different concentrations of *Melia azedarach* extraction on the female *Musca vicina*. These two parameters were; the time required for the completion of the first gonotrophic cycle; the number of hatched eggs. The onset of each larval instar and the time interval between the two successive ecdysises had been taken as a third parameter to demonstrate the effect of the *Melia azedarach* extraction on the instars' growth.

The data obtained from the first set of experiments is represented in tables (1,1a and 2, 2a). These experiments were conducted at a temperature of $27 \pm 2^{\circ}$ C and a relative humidity of $70\% \pm 2$. It is seen from tables (1 and 2) that the time required for completing the first gonotrophic cycle of females at age 24 hours, which were fed on *Melia azedarach* (fruits) extraction at the concentrations of 1.8%, 2.4% and 3.6% had decreased. Table (1) showed that the time

required for completing the first gonotrophic cycle in the female groups I, II and III that fed on the previously mentioned concentrations of Melia azedarach fruit extraction was 90, 75.3 and 67.6 hours; respectively as compared with 98 hours for the control group, (Table 1). The time was 84,72 and 68 hours in group Ia, IIa and IIIa; respectively, as compared with 96 hours for the control group (Table 2) .Tables (1 and 2) showed that the number and the percentage of the hatched eggs were decreased in treated groups I, II, III and Ia, IIa and IIIa. Such percentages were found to be 69.0%, 55.3% & 49.1 % for groups I, II and III, respectively, as compared with 98.5% for the control group (Table 1) and 72.9%, 64.5% and 52% for group Ia, IIa and IIIa; respectively, as compared with 98.5% for the control group (Table 2) .It is seen form tables (1 and 2) that the metamorphosis of the larvae in groups I, II, III and Ia, IIa and IIIa was retarded. It was noted that the mean duration of the first larval instar was prolonged when compared with the control group (Tables 1 and 2). The onset of the first ecdysiast occurred after an average of 88, 97.3 and 102.6 hours for groups I, II and III; respectively as compared with 73.3 hours for the control group (Table 1) and 82.7, 94 and 98.3 hours for groups la, Ila and IIIa; respectively as compared with 73.3 hours for the control group (Table 2).

It is indicated from tables (1 and 2) that the mean duration of the second larval instar in groups I, II, III and Ia, IIa and IIIa had been prolonged. The onset of the second larval ecdysis occurred after an average of 137.6, 145 & 155 hours for groups I, II & III; respectively as compared with 122.3 hours for the control group (Table 1) and 130, 136.3 and 147.7 hours for group la, IIa and IIIa; respectively as compared with 123.3 hours for the control group (Table 2) .The third larval instar had shown retardation in metamorphosis in groups I, II, III and Ia, IIa and IIIa in tables 1 and 2. The onset of the third larval ecdysis occurred after an average of 179.3, 190 & 210 hours for groups I, II & III; respectively as compared with 169.3 hours for the control group (Table 1) and an average of 176.7, 186.7, 205 hours for group Ia, IIa and IIIa; respectively as compared with 168 hours for the control group (Table 2).

Table 1a. The larvae of Musca vicina, produced from adult females fed on Melia azedarach fruit extract at age 24 hours, reaching the succeeding instar at the standard time:

Records of larvae reaching the	e next instar	at the stan	dard time.			
	First instar		Second ins	star	Third insta	ır
Feeding medium provided	After 72 h	ours	After 120 l	hours	After 168 l	nours
	No.	%	No.	%	No.	%
Standard diet	135	99.2	133	96.3	130	95.5
Standard diet+1.8%Melia azedarach fruit extract.	60	80.4	45	60	40	50
Standard diet+2.4%Melia azedarach fruit extract.	40	76.9	30	57.6	20	38.4
Standard diet+3.6%Melia azedarach fruit extract.	11	70.5	8	51.2	4 2	5.6

Table 2a. The larvae of Musca vicina, produced from adult females fed on Melia azedarach leaf extract at age 24 hours, reaching the succeeding instar at standard time.

Records of larvae reaching the next instar at the standard time.

	First instar		Second inst	ar	Third instar	
Feeding medium provided	After 72 ho	urs	After 120 h	ours	After 168 h	ours
	No.	%	No.	%	No.	%
Standard diet	135	98.5	132	96.3	132	96.3
Standard diet+1.8 %Melia azedarach leaves extract.	70	85.3	60	73.1	54	65.8
Standard diet+2.4% leaves Melia azedarach extract.	53	80.3	45	68.1	33	50
Standard diet+3.6%Melia azedarach leaves extract.	33	76.7	23	53.4	18	41.8

				2	0	2	2 2	Q	÷.	T I	5 17	ω	
sti-		vo. Of ormal adults	%	.66	100	.66	3 ±0. ¤	34.	38.	41.	. 38± 96ţ	29.	25
эте		~ _ "	Nc	13 3	13 8	13 5	13 5.:	5 27	52	5 25	L± 28	9 16	5 13
dc	adults	Adults with normé wings	%	0	0	0	0	11	1.5	11.	11.1	12.	11.5
ISCE	rmal e	abi A	No	0	0	0	0	6	∞	8	7 8.3	2 2	9 (
Mu	Abnoi	small	% c	0	0	0	0	2.5	1.3	1.4	. 1.7 ±0.	1.5	1.9
les	ts	-, _{(U}	ž	0	5	5	0	5 2	3	4 1	7± 1 4	8	9 1
mal	1 ad ul	Small	%	0	0	0	0	5	1	1.′	3 1.7 0.⁄	1.	1.5
fer	mrgeo	U	NG	0	0	0	0 0	5	1	1	0 1.3	1	1
j of	lete e	pae	%	99.2	100	99.2	99.5± .2¤	34.6	38.1	41.4	38±2. §	29.6	25
dinç	Comp	oN	No	133	138	135	135. 5	27	29	29	28.3	16	13
fee		alf rgef ult P.)	%	0	0	0	0	6.4	5.2	5.7	5.8± 0.3	7.4	5.7
E		Lh: ad- ad-	No	0	0	0	0	Ω.	4	4	4.3	4	ю
fro		rrict- upae m	%	0	0	0	0	12.8	10.5	10	11.1 ±0.9	14.8	15.3
ing		const ed pu froi (P.I	No	0	0	0	0	10	00	7	8.3	∞	00
quc	npae	rted P.L.)	%	0	0	0	0	1.71	\$5.5	8 9. 2	5.6± 0.7	15.1	t0.3
oroc	mal pr	gmen Ipae (I	0	0	0	0	0	е 6	7 3	4 3	5.6 3.	е б	1 4
ae r	Abnori	ae Pi pu	Z	-	-	-	-	7	2	2	1.3 26	1	2
gup	4	ll pupa S.L.)	%	0	0	0	0	2.5	1.3	1.4	1.7±0	1.8	1.9
d p		Smal (\$	No	0	0	0	0	2	1	1	1.3	1	1
an		/al- pal nedi- N.L.)	%	0	0	0	0	3.8	6.5	5.7	.3±0. 7	9.2	11.5
лае		Larv pup interm ate (I	zо	0	0	0	0	m	ъ	4	4 5	Ś	9
lan		—	%	9.2	00	9.2	.5±0 2¤	11	3.3	7.1	3±1. 3§	37	0.7
of Cts.		Jorma	-	6	3 1	6		7	4	4	5 4.3		ñ
trac		2 -	No	133	138	135	135.	32	33	33	32.6	20	16
erat : ex		Hours to the onset of oupa- tion		98	100	96	8±1.2	110	120	100	10±5. 8¥	104	145
iene	arvae	t t	%	0	0	0	6	20	46	4.2	6.7 1 1.7	50	55
st g <i>ch</i> f	rmalls	gment larvae	0	0	0	0	0	39	5	31 4	35 4 ±	27	6
e fin ara	Abno	e =	۷ %	0	0	0	0	ى 	m.	ei	3	<u>oó</u>	6
the <i>red</i>		Sma larva	°N N	0	0	0	0	2 2	1	1 1	1.3 1	1 1	1 1
: of <i>a a</i> :		e al	%	9.2	00	9.2	0.5± .2¤	9.8	20	2.8	9.2± .3§	6.2	2.3
ent <i>Ieli</i> i		Norm larva	0	3	8 1	5 9	0 0	5	~	7 5	.6 4 <u>5</u> 2	4	4
nd nf∧			ž v	0 13	0 13	0 13	3 13! 3	36	38	37	36.	0 25	0 22
/elo ns c	instar	Per cen mor talit	z o	0	0	0	0	0	0	0	0	0	0
dev tior	Third	lours to third cdysis cdysis rean x)		166	176	172	69.3± 1.8	176	180	182	79.3± 1.8¥	185	190
he Itra	2		%	0	0	0	0 1	0).3	0	1 1.	0	0
nd t cer	insta	Perce morta ty	ON NO.	0	0	0	0	0	1	0	0.3 (0	0
s ar con	econd	burs :o :ond tysis ean ()		22	20	25	2.3± .4	35	38	40	.5 ¥	40	45
int -	Š	Hc t sec (m· x		7 1.	1.	7 1.	4 12.	5 1	.1	1	7 13 ±1.	8 1	9 1.
ig e ere	tar	rcent	%	0.;	0	0.1	0.	2.:	1:	1.4	3 1.:	1.5	1.5
chin diff	st inst	be no	NG	1	0	1	2 0.6	2	7	1	2 1.5	1	7
ng	Fir	Hour: to firs ecdy- sis x)		72	78	70	73.3±: .4	88	06	86	88±1 ¥	06	100
of h usi		s	%	99. 2	98. 5	97. 8	98. 5±0 .3¤	72. 2	69	66	69± 1.8 §	57. 4	53
urs		Hatch egg	Ŋ	134	138	136	136	78	76	70	74.6	54	52
hol 14 hol		vo. Of egg aying		135	140	139	138±1 .5¤	108	110	106	108±1 7	94	86
ws tł age 2		Time re- quired for com- oleting gono- robhic	cycie	98	100	96	8±1.2¤	06	88	92	90±1.2 §	78	76
. Sho <i>a</i> at ;		Repli- cate		-	=	≡	Total 9 avr.	_	=	Ξ	Total !	_	=
Table 1. <i>ca vicin</i> .		Feeding medium provided		Standard diet			Control group	Standard diet + 1.8% <i>Melia</i> azedarach fruit extract.			Group I	Standard diet + 2.4% <i>Melia</i> <i>azedarach</i> fruit extract.	

		<u> </u>	r	r	1	1		r										
	. Of ults	%	26	26.9 ±1.4 *	13.7	16.6	14.2	14.7 ±1	824. 4									
	nor adı	No	13	14	2	ε	2	2.3										
lts	h mal 35	%	14	12.8 ±0.7	13.3	16.6	14.2	14.7 ±1#	6.1									
al adu	Adu wit abnor win	No	7	6.6	7	m	2	2.3										
norm	lts all	%	0	1.2 ±0. 4	0	0	0	0	0.1									
Ab	Sm adu	No	0	-	0	0	0	0										
fged	all	%	0	1.2 ±0. 4	0	0	0	0	0.1									
ie em ults	S nu	Ñ	0	0.6	0	0	0	0										
mplet ad	pae	%	26	26. 9± 1.4	13. 3	16. 6	14. 2	14. 7± 1	82 4									
Co	N N N N N N N N N N N N N N N N N N N	Ŷ	13	14	7	ε	2	2.3										
	alf ergef Jult .P.)	%	9	6.4± 0.5	6.6	5.5	7.1	1.4± 0.5	0.7									
	S ac eme	No	3	3.3	ц.	1	7	7										
	rrict- Ipae m	%	80	16±0 .8#	40	33.3	35.7	36.3 ±1.6 **	97.2									
ae	Const ed pu fro (P.I	Ñ	6	с. 8	۵	9	ъ	5.6										
i pupë	ited ie)	%	42	0.3 9.1 * 2.1	3.3	4.4	5.7	17.8 0.8	3.6									
orma	gmen pupa (P.L.	9	5	0.3 2 ±	м 2	6	2	е: +										
Abn		~	0	.2 20	0	0	0	0	5.0									
	Smal pupa (S.L.)	0	0	1.6 1	0	0	0	0	0									
	;	~ ~	∞	.3 C	3.3	1.1	Ţ.).5 #	ς.									
	Larval pupal terme te (N.I	0	-	-6. L	17	11	2	5 I	4									
	ai <u>D</u>	z	5	<u>م</u> وز	ω. 	.2	4	± ∞										
	ormal upae	~	m	3 33 ±1 *	13	22	21	19	33									
	ž a	Ň	16	17.	7	4	m	m										
	Hour s to the onset of pu- patio		150	145± 2.8¢	180	170	180	176.6 ±3.3' "	93.7									
larvae	ented vae	%	60	55±2. 9#	73.3	66.7	71.4	70.5± 1.9**	28.5									
ormal	Pigm lar	No	30	29	11	12	10	11										
Abno	nall vae	%	0	1.2	0	0	0	0	0.1	05)								
	Sn lar	Ŋ	0	0.6	0	0	0	0		o.								
	mal /ae	%	40	42.8 ±1.8 *	26.6	36.8	28.5	30.6 ±2	292	<d)< td=""><td></td><td></td><td></td><td></td><td>Ξ.</td><td></td><td></td><td></td></d)<>					Ξ.			
	Nor lan	No	20	22. 3	4	9	4	2		at					dnc			
<u> </u>	cent rtali- ty	%	0	0	0	0	0	0		dn					p			
d insta	Der (Ň	0	•	0	0	0	0		gro					I &	ρI		
Third	Hours to third ecdysis mean x		195	190±2.9 ¢	205	2010	215	210±2.9 	52.9	trol					dno	luout		
a,	ent tal-	%	0	0	0	0	0	0		Con					ъб	න න		
d inst	Perc mor iti	No	0	0	0	0	0	0) e (dn	,dn	dn		
Secon	Hours to second ecdysis x)		150	145±2. 9¥	150	150	155	155±2. 9""	36.2	ith tł	&III		Π	l gro	l gro	l gro		⊟
5	rcent rtality	%	0	1.2	0	0	0	0	3.5	Νp	I, II	Ξ	II&I	ntro	ntro	ntro	н	I &
t insta	Be	Å	0	° 0	0	0	0	0		are	dn	dn	dn	8	8	8	dn	dn
First	Hours to first ecdysis mean x)		102	97.3±3.7 ¢	105	100	103	102.6±1. 5 ¢	28.7	dmo	gro	gro	gro	the	the	the	gro	gro
	Be	%	5.5	\$5.3 * 11.0	20	17.3	50	19.1 1.5	337. 3	as c	то Ш	то Ш	ШŌ	mo'	ШÖ	ШO	ШO	то
	Hatchi eggs	°N N	20	52 5	15	18 4	14	15.6 4	m	tly a	nt fi	nt fi	nt fi	nt fi	nt fi	nt fi	nt fi	nt fi
	No. Of egg aying		06	94±2. 3 *	0 M	88 S	28	32±3 1	124.3	ican	fere	fere	fere	fere	fere	fere	fere	fere
	hic r hic			*				4	4	gnif	dif	· dif	dif	dif	dif	dif	dif	dif
	Time re Juired fu ampleti notrop cycie		72	′5.3±1.8	70	65	68	67.6±1.	95.9	's sic	intly	intly	intly	intly	intly	intly	intly	intly
	- C C D			~				_		ffer	fica	fica	fica	fica	fice	fica	fice	fica
	Repli- cate		=	otal vr.			=	otal vr.		it di	igni	igni	igni	igni	igni	igni	igni	igni
	Feeding medium provided			Group II a	Standard diet + 3.6% <i>Melia</i> <i>pzedarach</i> ruit extract.			Group III a	F-test	L.S.D. tes	x S	× ۲	§ S	¥ S	s S	¢S	# S	s **
L										·								

<u>CC-license</u>

DOI: 10.14302/issn.2637-6075.jpae-19-2586 Vol-1 Issue 2 Pg. no.- 28

tica		Of Itts	%	- 98. 5	98. 5	97. 8	98. 2±0 .2¤	37. 5	31. 7	32. 5
nest		NON	Ŷ	132	138	135	135	30	7 26	. 28
qon	adults	vith bnor- nal vings	% 9	0	0	0	0	o o	້ຕັ	2 10
sca	irmal	- s:	%	0	0	0	0	5	2. 4 ⁸	
anw	Abnc	Smal	°z	0	0	0	0	7	2	T
es	pa	all	%	0	0	0	0	1.2	2.4	1.1
mal	emerg	Smi	Š	0	0	0	0	1	7	Ч
f fei	plete e s	e e	%	100	100	99.2	99.7 0.2¤	37.9	31.7	32.9
о б	Com	Norm pupa	Ŷ	134	140	137	137	30	26	28
sdin		If nerge idult .P.)	%	0	0	0	0	7.5	8.5	9.4
fee		g g g g g g g g g g g g g g g g g	ž	0	0	0	0	6	6	ر. 80
шo		nstrict pupae pm (P.I	%	0	0	0	0	10	10.	10.
g Ti		ed Co frc	ž	0	0	0	0	5.4 8	1.1 8	6 6.
ncin		;ment« pae L.)	%	0	0	0	0	¥£	۶۶ ۲	3
lod		Pig pu (P.	Ň	0	0	0	0	28	6 28	3 28
е D	Jae	mall S.L.)	~ ~	0	0	0	0	Ň	r,	5
npa	and let	- idi- (,	z	0	0	0	0	2	м 8	7 2
īd p	bnorm	arval- upal iterme :e (N.L	× 0	0	0	0	0		4.	4
an	Ā	א ב ד	Ż	0	0	.2 0	.7± 0 2¤	1.	.1	4
vae		pae	%	4 10	0 10	66 2	ح 20 2.0	48	45	47
: lar			Ň	13,	14(13.	0.	38	37	40
Jo L		Hours to the onset pupa- tion		96	86	95	96.3± 3	100	95	86
atio		nted	%	0	0	0	0	45.5	43.9	43.5
xtra	rvae	^j igmer arvae	9	-				36	36	37
ger af e	malla	<u> </u>	~	0	0	0	0	2.5	3.6	2.3 3
ìrst 7 leã	Abnor	Small larvae	2 N	0	0	0	0	5	m	2
he f raci			%	00	00	9.2	9.7±).2¤	60.6	0	51.7
of tl <i>eda</i> ,		ormal vae	<u>~</u>	4 1	0	7 5	20 2	0)	<u> </u>	
ent (lar Nc	ž	13	14	13	13	40	41	44
ome Ielia		srcent	~ ~	0	0	0	0	0	0	0
elo if M	instar	م تف د م ية	ž	0	0	0	1.2 0	0	0	0
dev 1s o	Third	Hour: to thii ecdys (meai x)		170	166	168	168±1 3	172	178	180
tior		cent tality	%	0	0	0	0	0	0	1
nd t ntra	instar	Perc	Ž	0	0	0	1 0	0	0	1
nce.	econd	Hours o econd econd scdysis mean)		120	24	.26	[23.3± 8	30	28	.32
egg	S	t tent t k (i é c x	~	1	1	1.7	1 	1	2.4 1	1.1
ing rent	star	Perc mori ty	Z O	0	0	1 (э. С	T T	5	1
iffer	irst ins	Hours o first :cdysis mean)		0	4	9	3.3±1.	<u>0</u>	2	9
f ha g d	<u> </u>	ی × ۵۰۵ ۲		3.5 7	3.5 7	3.5 7	315± 7318	<u>∞</u>	1.2	8
a of usin		atchin∉ ïgs	%	4 95	36 0	36 8	7 95 0	71	73	73
dat Irs t		e H	z	13	14	13	а 13	62	82	85
hou		No. layir		136	142	140	139. ±1.8 137	110	112	115
vs t 24		Time re- d for com- pletin g g gono- troph troph ' ic cycle		96	100	91	96±2. 6¤	84	80	88
Shov		ate				_	otal vr.			_
2. 5 at a		ن ۲		et I	=	=	ar ⊥ nb	et a l	=	=
Table <i>vicina</i>		eeding nedium rovided		tandard die			ontrol grou	tandard dii 1.8% <i>Meli</i> i 2 <i>edarach</i> Ik ktract.		
		ŭΕā		St			Ū	ê ö + ö		

		%	33.9±1 9§	23.8	24.2	21.5	23.1±0 8*	2	6.8	4.4	5.4±0.6		
	No. O norma adults	No	28	15	17	14	15	2	S	2	2.3		
lts	s s	%	9.7±0 .4	12.6	12.6	12.3	12.5± 0.1	15	15.9	15.5	15.5± 1.6**		
al adu	Adult with abno wing	No	∞	ø	6	8	8	80	6	2	∞		
norm	hults	%	1. 6± 0.	0	8 5	1.	1. 4± 0.	0	0	0	0	0	
At	Sn	ž	±0 1	0	2	1	±0 1	0	0	0	0	\square	
adults	all pae	%	1.6: .4	0	2.8	1.5	1.6 [.] .4	0	0	0	0		
erged	e sm	No	ب ب	0	2	1). 1	0	0	0	0	\vdash	
ete em	l pupa	%	34.2± 9§	23.8	24.2	21.5	23.1±I 7*	5	6.8	4.4	5.4±0.		
Comple	Vorma	40	80	5	17	4	5				8		
	ged _		32 TQ	m	1	1	2 1 0		<u>ь</u>	4	0∓9		
	Half emer; adult (N.P.)	о И И	7 8. .5	4 6.	5 7.	4 6.	4 6. .3	2 5	2 4.	2 4.	2 4. .2		
	ed om		5±0.2	10	ā	3	5±0.5				9±0.9		
	nstrict pae fr .L.)	%	10.5	12.6	14.2	13.8	13.5 #	20	22	20	20.5		
	Co pu (P.	NG	∞ _;		10	6		∞	10	6	6 *2	\vdash	
	ented e (P.L.)	%	34.1±	36.5	34.2	35.3	35.3±I	47.5	45.4	51.1	48±1.'		
	Pigme	No	28	23	24	23	23	19	20	23	21		
	ae (%	2.8±0 .3	1.5	2.8	1.5	1.90. 4	0	0	0	0		
oupae	Sma pup (S.L	zο	5	1	2	1	5 1	0	0	0	0	\square	
irmal p	l- l medi- N.L.)	%	8.0±t	6.7	7.1	9.2	3.1±0.6 ‡	10	•	8.8	9.3±0.3		
Abnc	Larva pupa interr ate (I	No 9	m'm	5	5	9	3 #	4	4	4 8	4		
	hal	%	46.7± 0.9§	38	38.5	38.9	38.5± 0.1*	20	20.4	17.7	19.3± 0.8	3106.	
	Norr	No	8 M	24	27	25	25	∞	б	∞	യ്ന		
	Hours to the onset of pupa- tion		97.7± 1.3	120	125	130	125± 2.4¢	140	150	155	148.3 ±3		
arvae	- nted /ae	%	44. 3±0 .5	49. 2	48. 5	49. 2	49± 0.2 #	67. 5	68. 1	71. 1	28. 7±0 .9	307	
rmal la	Pig me lan	No	9. 30 30	5 31	8 34	5 32	.9 D. 32	27	30	32	30	\vdash	0
Abno	Small larva	× v o	2 ±1 4	1 1	2 2.	1 1.	1 1 4	0 0	0	0 0	0 0		0.05
	a	%	50.8 ±0.5 §	46	45.7	47.6	46.4 ±0.5 ∗	30	29.5	26.6	28.7 ±0.9) ^
	Norm larvae	oN	42	29	32	31	33	12	13	12	12		at (
ar	er- ent ior-	%	0	0	0	0	0	0	0	0	0		dnc
rd inst	urs id P ly- m ean ta	Ζo	5.7 7¥ 0	0	0	0 0	5.7 4c 0	0	0	0 0	i±2 0		l gre
Thi	Hou to thir thir ecc sis x)	` 0	176	182	185	190	186 ±2.	200	205	210	20 <u>6</u>		ntro
nstar	Per- cent mor- tality	6 ON	0.3 C	1 2	0	0 0	0.3 1	0	0	0 0	0		0
econd i	lours o econd :cdysis mean)		.30±1. `¥	.35	38	.36	.36.3± 1.9¢	.45	50	.48	.47.7± 5		h the
5	H t s ality e ((2	5±0 1 4 2	5	8	5	.:9±0 1	5	1	2 1	.: 1		d wit
instar	Perc	z o	3 J.	1	2 2	1 1	1	1	1	1 2		\square	arec
First	Hour s to first ec- dysis (mea n x)		82.7 ±1.8 ¥	94	98	06	94±2 .3¢	100	95	100	98.3 ±1.7 ¢		dmo
	ching s	%	72.9 ±0.6 §	63	68.6	61.9	64.5 ±2.1 *	50	51.7	54.2	52± 1.2		as co
	Hat egg	No	82	63	70	65	66	40	44	45	43	249	tl∕
	No. Of egg lay- ing		112. 3±1. 5§	100	102	105	102. 3±1. 5*	80	85	83	82.6 ±1.5	235.	ican
i	Time re- quired for com- pletin g	trophi c cycl€	48±2. 3§	70	72	74	72±1. 2	68	99	70	68±1. 2		ignif
	Rep- licat e		To- tal avr.	_	=	Ξ	To- tal avr.	_	=	≡	To- tal avr.		ers s
	Feeding medium provid- ed		Group I	Standard diet + 2.4% <i>Melia azedarach</i> leaf extract.			Group II	Standard diet + 3.6% Melia azedarach leaf extract.			Group III		L.S.D. test diffe

DenoccessPub

Significantly different from group I & II Significantly different from group I

*

<u>CC-license</u>

DOI: 10.14302/issn.2637-6075.jpae-19-2586 Vol-1 Issue 2 Pg. no.- 30

÷ #

....

 \sim \rightarrow

Significantly different from the control group, group I & group II.

Significantly different from the control group

Significantly different from group II&III

Significantly different from group III

¤ *

Significantly different from group I, II&III.

Significantly different from the control group & group I

Tables (1 and 2) showed that the onset of the pupation occurred after an average of 110, 145 and 176.6 hours for the larval groups I, II and III, respectively as compared with 98 hours for the control group (Table 1) and 97.7, 125, 148.3 hours in groups Ia, IIa and IIIa; respectively as compared with 96.3 hours for the control group (Table 2) .It is indicated in tables (1 and 2) that the percentages of larvae reaching the pupal stages in groups I, II, III and Ia, IIa and IIIa had been decreased, such percentages were found to be 43.8%, 33.2 %, 19% for groups I, II, III; respectively as compared with 99.5% for the control group (Table 1) and a percentage of 46.7%, 38.5% and 19.3% for groups Ia, IIa and IIIa; respectively as compared with 99.7% for the control group (Table 2).

Tables (la and 2a) demonstrated the retarding effect of the various concentrations of Melia azedarach extraction on the adults Musca vicina. The number and percentages of the larvae reaching the successive instars at the standard time had been recorded in tables (la and 2a). The number of molts from the first to the second instar was determined .In the first set of experiments, the percentages of the 1st instar larvae reaching the 2nd instar larvae reaching the standard time were found to be 60%, 57.6% and 51.2 % for groups I, II, III; respectively as compared with 96.3% for the control group (Table la) and percentages of 73.7%, 68.1% and 53.4% for groups Ia, Ila and IIIa; respectively as compared with 96.5% for the control group (Table 2a). It should be noted that the percentages of the second instar larvae reaching the third instar were 50%, 38.4% & 25.6% for groups I, II, III; respectively as compared with 95.5% for the control group (Table la) and a percentage of 65.8%, 50% & 41.8% for groups la, IIa and IIIa, respectively as compared with 96.3% for the control group (Table 2a). It is evident that the time required for the completion of the third larval instars had been prolonged by 11.3, 22 and 42 hours for groups I, II and III, respectively (Table la) and 8, 18.6 and 37 hours for groups la, IIa and IIIa; respectively (Table 2a) considering that the standard time required for the completion of the third larval instar is 168 hours (Tables la and 2a).

Three groups of adult *Musca vicina* at age 48 hours had been treated with three different concentrations of *Melia azedarach* fruit extract. The

three concentrations were 1.8%, 2.4% and 3.6%. The data obtained have been represented in tables (3 and 4) .It is seen from tables 3 and 4 that the time required for completing the first gonotrophic cycle of females at age 48 hours which have been exposed to fruits of *Melia azedarach* extraction had decreased. Table (3) showed that the time required for completing the first gonotrophic cycle in the female groups I, II and III that had been exposed to the previously mentioned concentrations of *Melia azedarach* extraction was 86.7, 72.3, and 57.3 hours; respectively, as compared with 97.3 hours for the control group (Table 3) and after 89.3, 75 and 61 hours in groups Ia, IIa and IIIa; respectively as compared with 98.7 hours for the control group (Table 4).

Tables (3 and 4) showed that the number and the percentages of the hatched eggs were decreased in treated groups I, II, III and Ia, IIa and IIIa. Such percentages were found to be 68.7%, 53.3 % and 48.5% for groups I, II, III; respectively as compared with 99.3 % for the control group (Table 3) and 81.2%, 70% and 56.3% for groups Ia, IIa and IIIa; respectively as compared with 99.1% for the control group (Table 4).

It was seen from tables (3 and 4) that the metamorphosis of the larvae in groups I, II, III and Ia, IIa and IIIa was retarded. It was noted that the mean duration of the first larval instar is slightly prolonged when compared with the control groups (Table 3 and 4). The onset of the first ecdysis occurred after an average of 96.7, 120 and 141.6 hours for the groups I, II and III; respectively as compared with 73.3 hours for the control group (Table 3) and after 94, 106.7 and 135 hours for the groups Ia, IIa and IIIa; respectively as compared with 78 hours for the control group (Table 4).

It is indicated from tables (3 and 4) that, the mean duration of the second larval instar in groups I, II, III and Ia, IIa, IIIa had been prolonged. The onset of the second larval ecdysiast occurred after an average of 191, 200 & 225 hours for groups I, II and III; respectively as compared with 126 hours for the control group (Table 3) and an average of 189.3, 191.7 and 208.3 hours for group Ia, IIa and IIIa; respectively, as compared with 130 hours for the control group (Table 4) .The third larval instar had shown retardation in metamorphosis in groups I, II, III and Ia, IIa and IIIa, in tables (3 and 4). The onset of the third larval

Table 3a. The larvae of *Musca vicina*, produced from adult females fed on *Melia azedarach* fruit extract at age 48 hours, reaching the succeeding instar at standard time.

Records of larvae reaching the next instar at the standard time.

	First instar		Second inst	ar	Third instar	
Feeding medium provided	After 72 ho	urs	After 120 h	ours	After 168 h	ours
	No.	%	No.	%	No.	%
Standard diet	138	99	136	97.6	135	96.9
Standard diet+1.8%Melia azedarach fruit extract.	56	77.7	40	55.5	36	50
Standard diet+2.4%Melia azedarach fruit extract.	33	72.8	23	50.7	18	39.7
Standard diet+3.6%Melia azedarach fruit extract.	10	66.6	6	40	4	26.6

Table 4a. The larvae of *Musca vicina* produced from adult females fed on *Melia azedarach* leaf extract at age 48 hours reaching the succeeding instar at standard time

Records of larvae reaching	the next insta	ar at the stan	dard time.			
	First instar		Second inst	ar	Third instar	
Feeding medium provided	After 72 ho	urs	After 120 h	ours	After 168 h	ours
	No.	%	No.	%	No.	%
Standard diet	136	98.1	134	96.6	134	96.6
Standard diet+1.8%Melia azedarach leaves extract.	78	79.9	56	57.3	51	52.2
Standard diet+2.4%Melia azedarach leaves extract.	57	74	42	54.5	33	42.8
Standard diet+3.6%Melia azedarach leaves extract.	37	68.1	23	42.3	16	29.4

Table 3. Shows domestica vicina	the 1 at a	data 3e 48	of 3 ho	hatc urs t	ching using	g eg g dif	igs ai Teren	nd ti it co	he c ncer	Jeve Itrat	lopr ions	nent ; of l	t of Meli;	the a az	eda	st g rach	enera 1 frui	atior t ext	n of ract	larv s.	ae :	and	dnd	ae p	rodu	cing	froi	m fe	edir	o D	f fei	nale	ς Ω	usca
					Firs	t instar	Secc	and insta	ar	Third ir	ıstar			Ab.	normal	llarvae				Abn	ormal p	Jupae						Comple adults	ete eme	erged	Abno	ormal ac	dults	
Feeding medium provided	T. Rep-fc Rep-fc licat cc bl fr	ime uired N om- e <u>e</u> leting la ophi in	영 수 없 수 9	atching 385	Hou rs frirsi ec- dysi s s an x)	e t Percé	Hou to seco :ali- (me: x)	rs Per sis ty mo	rcent ortali-	Hour s to third ecdy- sis n x) n x)	Percen	it t	vae	Lar S	lal vae	Pig- mente larvae	Hours to the onset pupa- tion	Nori	a a	Larv pup inte diat (N.L	e ae -	Small pupae (S.L.)	<u> </u>	igmente upae (P.	Con stric from (P.L.)	()	aalf smerge 1 adult N.P.)	N orma pupae	-	Small pupae	Sma adul	Adtu witi ts mai win	sh c r sa	lo. Of ormal dults
			ž	%		No	%	N	%		°	NC %	%	No	%	No No		N	%	No	%	% N	<u>z</u>	%	No	~	۵۵ ۲	°N N	~	% N	No	۷ %	%	% 0
Standard diet	- 1(00 14	40 14	10 100	74	7	0.7 128	0	0	174	0) 13	66 6	0 m	0	0	94	139	6.99.3	0	0	0	0	0	0	0	0	139 5	99.3	<u> </u>	0	0	0	3 99.3
	11 45	9 14	45 14	13 98.6	5 76	0	0 130	1	0.7	170	0) 14	.2 99.	0	0	0	100	142	99.3	0	0	0	0	0	0	0	0 (142 9	99.3	0	0	0	0	4 99.3
	36	8 15	36 13	35 99.3	3 70	0	0 120	0	0	172	1).7 13	4 99.	0	0	0	92	134	99.3	0	0	0	0	0	0	0	0 (134 (99.3	0	0	0	0	3 99.3
Control group	Total 9. avr8	7.3±1 1/ 3±1 3±	40. ±2. 13 ¤	99.3 39 0.3¤	3± 73.: 1 ±1.8	8 0.3 8	0.3 126 <u>.</u> 1	±3. 0.3	3 0.2	172± 1.2	0.3).2 ¹³ 3	.8. 99.:	0 3¤	0	0 0	95.3± 4	2. 138	99.3	0	0	0	0	0	0	0	0	138 (99.3¤ (0	0	0	0	3 99.3 ¤
Standard diet + 1.8% <i>Melia</i> <i>azedarach</i> fruit extract.	- -	7 10	00 70	20	92	1	1.4 190	7	1.4	184	0	30	42.:	9 2	2.9	36 ⁵ .	1 120	25	35.7	ŝ	7.1	2 2.	و: 2	7 38.	6 9.	12.9 4	t 5.7	21	e	2 2.9	9 2	9 2.	12. 9	1 30
	= 8(0 11	10 72	2 65.5	5 98	1	1.4 195	1	1.4	186	1	l.4 31	43.	1 25	2.8	36 5(0 125	25	34.7	, 6	8.3	2 2.	8	8 38	6. 8	11.1 5	5 6.9	20	27.8	2 2.8	3 2	2. 8 9	12. 5	0 27.8
	II 8:	2 10	05 74	1 70.5	5 100) 2	2.7 188	0	0	190	0) 32	43.	2 2	2.7	37 5() 125	26	35.1	9	8.1	2 2.	.7 2.	8 37.	8.	12.2 6	5 8.1	20	27	2 2.7	7 2	2. 7 10	13. 5 2	0 27
Group I	Total 84 avr7	6.7±5 10 ^§ 2.	05± 72 .9§	68.7 1.65	7± 96.: § ±2.4	4 1.3	191 ⁻¹ 1.8	±2. 0.7	0.0	186.7 ±1.8¥	0.3 0	31).5	43	* ^{1†}	2.8 ±0.	36 36 5. 5	0 ± 123.3 1.7¥	± 25.3	35.2 0.2§	5.7	7.8±0 .4	2 2	.8±0 2	7.6 38.	6 7	12.1 ±0.4	6.9 6 €.0	20	28.3± 0.9§	2.8 2 ±0.	5	2. 8± 0. 9:3 04	13± 0.2 ²	28.3 0 ±0.9 §
Standard diet + 2.4% <i>Melia</i> <i>azedarach</i> fruit extract.	- -	2 90	0 20) 55.5	5 110	1	2 200	0	0	194	0	20	40		7	28 5(5 150	15	30	Ŋ	10	1 2	सं	36	σ	18	10	10	20	1 2	-	2 7	14 1	0 20

т

Freely Available Online

	o. Of srmal ults	% (18.1	20.9	19.7± 0.7*		11.1	0	15.4	774.2									
	ts nc ormal ac	% Nc	5.9 8	.6.2 9	15.4± 9		.6.7 2	1.4 0	5.4 2	1.5									
adults	Adul with abnc wing	Z O	7	-	7 0		m	m	5	7									
bnormal	mall dults	40 %	2.2	2.3	2.2±0		0	0	0	27.6									
P.	= #	~ ~	2.2	2.3 1	2.2± 0.1		0	0	0										
emerge	Sma pupa	z o	1		0 1		0	0	0										
nplete ults	rmal	%	18.1	20.9	19.6± .7*	11.1	0	15.4	8.8±1 5	1774									
Cor adt	nu Put	No	8	6	6 7 d	5	0	2	2± 3 1.3	66									
	alf merge dult N.P.)	%	6	9.3	.9.2 0.2	5.6	7.1	0	.7 4.2	0.0									
	e e (I	Z	8.1 4	6.2 4	7.5	3.3 1	5.7 1	0.8 0	3.3 3.4 0	36.									
	Con- stricte pupae from (P.L.)	% Z 0	8 1	7 1	8 # # 1	۳ س	5	4 3	× +i *	1 6									
	nented ae .)	%	36.4	37.2	36.5± 0.3	38.9	42.9	46.2	42.7± 2.1~	6.3									
	Pign pup. (P.L.	No	16	16	16. 7	~	9	9	6.3										
0	mall upae .L.)	%	2.3	2.3	2.2± 0.1	0	0	0	0	27.6									
pupae	sr - pu (S	Z O	1		^{±1} 1	0	0	0	1.9 0										
normal	val-pur ermedi (N.L.)	%	13.6	11.6	11.7 .1	11.1	14.2	7.6	11	2.6									
Abr	Larr inte	No	9	ъ	5.3	7	2	1	t 1.7										
	ae	%	27.3	30.1	29.1± 0.8*	16.7	7.1	154	13.1± 3	581.1									
	Norr	No	12	13	. 13.3	m	1	2	5										
	Hours to the onset of pupa- tion		160	158	156±3 1¢	200	190	205	198.3 ¹ 4.4'''	210.3									
	ented	%	54.5	53.4	53.4± 0.7#	72.2	78.5	76.9	75.9± 1.9**	127.4	6								
rvae	Pigme larvae	No	24	23	25	13	11	10	11		0.0								
rmal la		%	2.2	2.3	2.2±0 .1	0	0	0	0	27.6	~ d					Ξ.			
Abnoi	Small larvae	No	1	1	1	0	0	0	0		at (dno			
	-		6.0	1.8	.0±0. *	7.7	1.4	~	4.1±1.	094.4	dno					y grc			
	Norma larvae	No %	18 4(18 4:	18. 40 6 5 ³	2	3 2:	3 23	3.6 9	Ä	gro					I 8	I di		
	ent tali-	%	0	0	0	0	0	0	0		trol					dno	Jrou		
ıstar	H Perr mor ty	No	0	0	1 0	0	0	0	•		con					, gr	ಶ		
Third ir	Hours to thirc ecdysis (mean x)		198	200	197.3± .8¢	210	220	225	218.3±4 4'''	56.3	the	Π.			roup	roup	roup		
star	Per- cent nortal- ty	» Z 0	0	0	0	•	0	0	•	42 6	with	II&I		%	ol g	ol g	ol g		Ъ
cond in	ours cond o dysis iean ii		5	5	0±2.9	0	5		5±2.9	4.8	red	p I,	p III	p II	conti	contr	conti	μI	p I 8
Se	Hc to nt se ality ec (m x)		.5 19	.3 20	.9± 20 .4 ¢	52	22	23	22	07 23	mpa	grou	grou	grou	the o	the c	the o	grou	grou
star	Perce morta	No %	2 4	1 2	1. 2 3 1	0	0 0	0 0	0	7	8	E	E	E	Ē	Ē	Ē	E	E
First in	Hours to first ecdy- sis n x)		120	130	120± 5.8¢	135	140	150	141.6 ±4.4''''		y as	t fro	t fro	t fro	t fro	t fro	t fro	t fro	t fro
	ching	%	53	51. 1	53. 3± 1.3 *	50	46. 6	44. 8	48. 5± 2	56. 4	antl	ren	ren	ren	ren	iren	ren	iren	iren
	Hatc	No	44	43	45	18	14	13	15	261. 9	lific	liffe	liffe	liffe	liffe	liffe	liffe	liffe	liffe
	No. Of Iay- ing		83	84	: 85.6 ±2.9 *	35	30	29	: 31.3 ±1.9	335. 3	sigr	tly c	tly c	tly c	tly c	tly c	tly c	tly c	tly c
Time re-	quire d for com- pletin g gono- trophi	c cycle	75	70	72.3± 1.5*	60	58	54	57.3± 1.8	29.7	fers	icant	icant	icant	icant	icant	icant	ican	ican
	Rep lica te		=	≡	To- tal avr.	_	=	Ξ	To- tal avr.		difi	Jnifi	Jnifi	Jnifi	Jnifi	gnifi	gnifi	Jnif	gnif
	dium					et + azeda- tract.					test	Sić	Sić	Sić	Sić	Sić	Sić	Sić	Sić
	ing mer de d				= d	lard dié <i>Melia</i> (^f ruit ex			E		Ū.								
	Feedi provi				Grout	Stanc 3.6% rach t			Groui	F-test	L.S	¤	×	Ś	⊁		÷	#	* *

www.openaccesspub.org JPAE

CC-license

DOI: 10.14302/issn.2637-6075.jpae-19-2586 Vol-1 Issue 2 Pg. no.- 34

] [m	m	m	4 H	-		8	5 Et	ŝ
		. Of ults	%	3.99.3		3.99.3	7 99.ŝ	42.1	39	37.5	39.6 1.3§	28.6
	ı	No. No.	°N N	137	135	137	137 .3	40	36	37	5 6 6	23
		ts witl srmal s	29	~	~	~	_).5	~	7.1	3.2±0.(2
	adults	Adul abnc wing	°` Zo	0	0	0	0	6	8	7 7	8	8
	rmal a	_ ~	%	0	0		-	1			10.3	en .
	Abna	Small adult	No 9	0	0	0	0	2	en en	2 2	3 2	7
	ged	ae	%	0	0	0	0	2.1	8	2	2.3± 0.3	1.3
	emer	Sma pup	zο	0	0	0	0	7	m	5	n in	Ч
	ıplete İts	mal	%	99.3	99.3	99.3	99.3¤	42.1	39	37.8	39.6± 1§	28.8
	Con adul	non dug	No	13 7	13 9	13 7	13 7	40	39	37	38 .6	23
		srged tt	%	0	0	0	0	10.5	11	9.2	10.2± 0.5*	10
		half eme adu (N.F	No	0	0	0	0	10	11	6	10	00
		strict- oupae n	%	0	0	0	0	9.4	∞	6.1	7.8±0. 9	11.3
		con ed p fron (P.L	zο	0	0	0	0	6	∞	9	7. 6	ŋ
		(P.L.)								œ.	.6±1	7
		^j igmei Jupae	٩ ٧	0	0	0	0	36 38	36 36	34 35	35 36 3	36
		<u>н ч</u>	٤	0	0	J	0	н ,,,	173	п	4±1 3	ت ب
	pae	Small pupae (S.L.)	% Z o	0	0	0	0	2 2.:	9	5 5	4. 4. 3 .8	2 2.5
	nal pu	edi- L.)					_	wi	-	۲.	.1±0.	¢0
	Abn orn.	.arval- Jupal ntermi ite (N.I	٩ ٧	0	0	0	0	. <u>5</u>	9	t 4.	е, ^с .	80
	4	9 <u>2</u> 2	2				3±0	2	9	6	5±1 5	~
		pae	%	5.66	5.66	5.66	5.99. ¤0.	52.6	50	46.9	. 49.5 .3§	38.5
		N N	о <mark>х</mark>	13 7	13	13	2 13 7.7	20	50	46	.7 48. 6	31
		Hours to the onset of pupa- tion		96	86	100	98±1.2	105	110	110	. 108±1. ¥	140
	a	nented ae	%	0	0	o	o	47.4	44	48.8	44.1±1. 9	47.5
	larvae	Pign larv	No	0	0	0	0	45	44	40	43	38
	ormal	= e	%	0	0	0	0	2.1	9	5.1	4.4± 1.2	2.5
	Abn	Sma larv	No	0	0	0	0	7	9	ŝ	4.3	7
		ae	%	99.3	99.3	69.3	99.3±(0¤	28	26	51	54.6±2 .1§	47.5
	 	Norr	zο	13	9	13	13 7.	55	56	50	53	38
	F	ercent ortal- y	%	0	0	0	0	0	7	о́т m	0	0
	d insta	a	z	0	0	0	.3± 0	0	1	Ó	.3± 0	0
	Thin	Hou to thirc ecdy sis x)		170	176	168	171. 2.4	180	182	188	183. 2.4	190
	nstar	Per- cent mor- tality	% Z o	0	1 0.	0	э. о.	1 1	1 2	1 2	1 1. 6	- 1 1
	Second i.	Hours to sec- ond ecdy- sis x)	-	132	130	128	130±1. 2	186	190	192	189.3± 1.8	200
		cent rtali-	%	0.7	0	0.7	0.5	1.1	2	2	1.6	1.3
	ıstar	s moi ty	zο	7	0	Ч	2. 0.	Ч	7	7	2 1. 6	T -
	First in	Hours to first ecdysi (mean x)		76	78	80	78±1.2	96	94	92	94±1.2	100
		hin B	%	100	98.6	98.6	7 99.1± 0.5¤	79.2	82	82.3	81.2± 1	72.7
		Hatcl eggs	°N N	138	140	138	. 138.7	95	100	86	± 97.7	80
		No. Of egg laying		138	142	140	. 140±1. 2¤	120	122	119	, 120.3± 1	110
		Time re- quired for com- pleting gono- trophic	chcie	96	102	86	98.7±1. 8¤	96	88	84	89.3±3. 5	80
P		Repli- cate		_	=	≡	Total avr.	_	=	≡	Total avr.	_
		Feeding medium provided		Standard diet	-	_	Control group	Standard diet + 1.8% <i>Melia</i> <i>azedarach</i> leaf extract.	-	-	Group I	Standard diet + 2.4% <i>Melia</i> <i>azedarach</i> leaf extract.

CC-license

pen access Pub

Freely Available Online

		Time				First in:	Istar	Sec	cond in: urs	star 1	Third ins	star		4	Abnormé	al larvae				4	Abnormē	al pupae	-					complete (dults	emerged	Abnorme	l adults		
Feeding medium provided	Repli-	re- quired for com- pleting gono- trophic	No. Of egg laying	Hatch eggs	guir	Hours to first ecdysis (mean x)	t Perci s mort ity	to ent sec ant ont :al- ecc sis x)	c- P d cر dy- rr ta ean	er- 1 ent 1 inor- 6 ality (Hours to third ecdy- sis (mean	Percen mortal ity	Norm it larva.	e e 3	small arvae	Pigm larva	ented	Hours to the onset of pupa- tion	Normi	<u>יש בי בר</u>	-arval- oupal ntermec ite (N.L.)	Smal li- (S.L.)		gmented Ipae (P.L.)	Constr ed pup from (P.L.)	ict- half ae em adu (N.F	It F	lormal	Small pupae	Small adults	Adults - abnorm wings	No. with nor adu	Of mal llts
		cycle		N	%		s Z o	~	Z O	%		No %	Z O	۷ ۶	40 %	No	%		% NO	۷ ۶	40 %	z o	% Nc	% 0	% Z 0	No	V %	% Of	% N 0	% ON	% Z 0	NO	%
	=	75	109	75	68.8	105	2 2	2.7 19(0 0	0	188	0 0	37 4	9.5 1	1.3	35	46.7	155	29 3	18.7 8	3 10.7	7 1 1	1.3 28	3 37.3	7 9.3	2	9.3 2	2 29.3	1 1.3	1 1.3	9 12	22	29.3
	≡	70	111	76	68.5	115	2	2.6 18!	5 1	-i e	186	0	36 4	17.4	1 1.3	36	47.4	145	28 3	16.8	3 10.5	1 1	3 26	34.2	8 10	2 6	2.9.2	2 28.9	1 1.3	1 1.3	8 10.	5 22	28.9
Group II	Total avr.	75±2.9 *	110±0. 6*	77	70±1. 4*	106.7± 4.3	t 1. 7 2	2.2 19. 4.4	1.7± 0. 1 7	.0	188±1. 2	0	37 0	k8.1± 1.6*	1.7: 1.3 0.4	± 36	47.2±0. 2	146.7± 4.4¢	29. 3 3 .5	88.1±0 5*	7.7 10± 6**	* 1. 1 * 3	L.7±0 27 4 .7	35.9±0.5	9 8 50	4± 7 6 7	9.1±0 2 .6* .	:2 29±0. 3 2*	1 1.3	1 1.3	8. 10. 3 6	8±0. 22. 3	29±0. 2*
Standard diet + 3.6% <i>Melia</i> <i>azedarach</i> leaf extract.		65	86	28	59.2	130	1	1.7 210	0	0	200	0	20 3	14.5 C	0	37	63.8	195	19 3	12.8	3.4	0	57	46.6	1 17.	4	6.9	5 25.9	0	0	9 15.1	5 15	25.9
	=	60	95	55	57.9	135	1	L.8 21!	2	0	210	0	18 3	12.7 C	0	36	65.5	190	17 3	1 0.0	l 1.8	0	0 28	\$ 50.9	8 14	5 4	7.3 1	3 23.6	0	0	1 1 20	13	23.6
	≡	58	96	50	52.1	140	0) 20(0	0	205	0	14 2	8	0	36	2	200	13 2	1	۱ 2	0	0 27	54	9 18	m	6 1	0 20	0	0	1 0 20	10	20
Group III	Total avr.	61.2.1	96.3±0. 9	. 54.3	56.3± 2.2	135±2. 9	0. 6	L.2 20(8.3± 0	0	205±2. 9	0	17 3 .3 1	81.7± C	0	36	67.1±2. 5	195±2. 9''''	16. 2 3 . <i>i</i>	29.9±2 1 2	L.3 2.4: 5	0 6 9) 27 .3	7 50.5±2.2 **	9 16 1*	6± 37 *	6.7±0 1 .4	.2 23.2± 7 1.7	0 0	0 0	1 18. 0 5	5±1. 12. 7	23.2± 1.7
F-test		38.6	420.3		165.6	76.3		10(8.5	93 .5	36.7		m	99.2	4.7		47.2	242.5	0	40	45.5	~	1.7	32.7	25.	∞	11.7	1060. 8	12.1	12.1	28.		1060
L.S.D. tes	t dif	fers s	ignifi	cantl	ly as (comp	pare	d wit	ţ. H	e col	ntrol	grou	ıp at	<d)< td=""><td>0.05</td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d)<>	0.05	~																	
¤	Sign	ificant	tly dil	fferei	nt fro	m gr	roup	Ι, Π	8III.																								
*	Sign	ificant	Hv dif	fere	nt fro	m ar	ullo,	111																									

Significantly different from group III

Significantly different from group II&III

Ś

Significantly different from the control group ⊁

Significantly different from the control group, group I & group II.

Significantly different from the control group & group I ÷

Significantly different from group I #

Significantly different from group I & II * *

www.openaccesspub.org JPAE

<u>CC-license</u>

DOI: 10.14302/issn.2637-6075.jpae-19-2586 Vol-1 Issue 2 Pg. no.- 36

ecdysiast occurred after an average of 186.7, 197.3 and 218.3 hours for groups I, II &III; respectively, as compared with 172 hours for the control group (Table 3) and an average of 183.3, 188 and 205 hours for groups Ia, IIa and IIIa; respectively as compared with 171.3 hours for the control group (Table 4) .Tables (3 and 4) showed that the onset of the pupation occurred after an average of 123.3, 156 & 198.3 hours for the larval groups I, II and III; respectively as compared with 95.3 hours for the control group (Table 3) and an average of 108.3, 146.7 and 195 hours for groups Ia, IIa and IIIa; respectively as compared with 98 hours for the control groups (Table 4).

It is indicated in tables (3 and 4) that the percentages of larvae reaching the pupal stages in group I, II, III and Ia, IIa and IIIa, had been decreased. Such percentages were found to be 35.2%, 29.2% and 13.1% for groups I, II, III; respectively as compared with 99.3 % for the control group (Table 3) and an average of 49.5% 38.1% and 29.9% for groups Ia, IIa and IIIa; respectively as compared with 99.3% for the control group (Table 4). The data obtained from the third set of experiments have been represented in tables (5 and 6). It is seen from tables (5 and 6) that the time required for completing the first gonotrophic cycle of females at age 72 hours, which had been exposed to Melia azedarach fruits extraction at the concentrations of 1.8%, 2.4% and 3.6% had decreased. Table (5) showed that the time required for completing the first gonotrophic cycle in groups I, II and III that had fed the previously mentioned concentrations of Melia azedarach extractions was 85.3, 80.7 and 75.7 hours; respectively, as compared with 97.7 hours for the control group (Table 5). The time required for completing gonotrophic cycle was 86.7, 83.3 and 78 hours in groups Ia, IIa and IIIa; respectively as compared with 96.7 hours for the control group (Table 6) .Tables (5and 6) showed that the number and the percentage of the hatched eggs were decreased in the treated groups namely I, II, III and Ia, IIa and IIIa. Such percentages were found to be 85%, 77.6% and 62.2% for groups I, II & III; respectively as compared with 98.8% for the control group (Table 5) and an average of 92.6%, 88.9% and 84.9% for groups Ia, IIa and IIIa; respectively as compared with 99% for the control group (Table 6) .It was seen from tables (5 and 6) that the metamorphosis

of the larvae in groups I, II, III, and Ia, IIa, IIIa was retarded. It was noted that the mean duration of the first larval instar was prolonged when compared with the control group (Tables 5 and 6). The onset of the first ecdysiast occurred after an average of 88.7, 98 and 99.3 hours for groups I, II and III; respectively as compared with 74 hours for the control group (Table 5) and an average of 90, 95.3 and 105 hours for groups Ia, IIa and IIIa; respectively as compared with 75.3 hours for the control group (Table 6).

It is indicated from tables (5 and 6) that the mean duration of the second larval instar in groups I, II, III and Ia, IIa, IIIa had been prolonged. The onset of the second larval ecdysiast occurred after an average of 155, 165 and 195 hours for groups I, II and III; respectively as compared with 122.7 hours for the control group (Table 5) and an average of 144.3, 160 and 185 hours for groups Ia, IIa and IIIa; respectively, as compared with 126 hours for the control group (Table 6). The third larval instar had shown retardation in metamorphosis in groups I, II, III and Ia, IIa, IIIa in tables (5 and 6). The onset of the third larval ecdysiast occurred after an average of 183.3, 190.7 and 198 hours for groups I, II and III; respectively as compared with 172.7 hours for the control group (Table 5) and an average of 176.3, 184 and 190 hours in groups Ia, IIa and IIIa; respectively as compared with 170 hours for the control group (Table 6) .Tables 5 and 6 showed that the onset of the pupation occurred after an average of 105, 143.3 & 191.3 hours for the larval groups I, II and III; respectively as compared with 97.3 hours for the control group (Table5); and an average of 101, 136.7 and 185 hours in groups Ia, IIa and IIIa; respectively as compared with 95.3 hours for the control group (Table 6) It is indicated in tables (5 and 6) that the percentages of larvae reaching the pupal stage in groups I, II, III and Ia, IIa, IIIa had been similarly decreased. Such percentages were found to be 64.3, 59.2 and 37.3% for groups I, II and III; respectively as compared with 99.3% for the control group (Table 5) and an average of 83.9, 72.5 and 70.3% for groups Ia, IIa and IIIa; respectively as compared with 99.1% for the control group (Table 6). The data obtained from these experiments demonstrated that the adults reared on media containing Melia azedarach extraction seemed to show some morphological variations of larvae, pupae

Table 5a. The larvae of *Musca vicina*, produced from adult females fed on *Melia azedarach* fruit extract at age 72 hours, reaching the succeeding instar at standard time

Records of larvae reaching	the next insta	ar at the stan	dard time.			
	First instar		Second inst	ar	Third instar	
Feeding medium provided	After 72 ho	urs	After 120 h	ours	After 168 h	ours
	No.	%	No.	%	No.	%
Standard diet	139	98.5	138	97.8	137	97.1
Standard diet+1.8 <i>%Melia</i> azedarach fruit extract.	73	79.9	52	56.9	48	52.5
Standard diet+2.4%Melia azedarach fruit extract.	56	72.1	35	45.1	32	41.2
Standard diet+3.6 <i>%Melia</i> azedarach fruit extract.	42	70.4	24	40.2	21	35.2

Table 6a. The larvae of *Musca vicina*, produced from adult females fed on *Melia azedarach* leaves extract at age 72 hours, reaching the succeeding instar at standard time.

Records of larvae reaching the next instar at the standard time.

	First instar		Second inst	ar	Third instar	
Feeding medium provided	After 72 ho	urs	After 120 h	ours	After 168 h	ours
	No.	%	No.	%	No.	%
Standard diet	138	98.8	138	98.8	136	97.4
Standard diet+1.8 <i>%Melia</i> azedarach leaves extract.	106	81.5	80	61.5	78	60
Standard diet+2.4% <i>Melia</i> azedarach leaves extract.	97	79.3	70	57.2	61	49.8
Standard diet+3.6 <i>%Melia</i> azedarach leaves extract.	85	75.6	58	51.6	55	44.9

	o. Of ormal lults	%	2 99.3	1 99.2	7 99.3	99.2 0 ±0.0 ¤	63.3	56.8	64	16.4 ±2.3	
	a ac ac	ž	14	14	Ę	14	57	54	57	0.9 56	
lts	dults /it.h bnorm: /ings	%	0	0	0	0	3.3	5.3	2.2	. 3.6±	
ial adul	<pre>< n < ></pre>	z o	0	0	0	0	3	1 5	2 2	8±0 3 3	
Abnorm	Small adults	% 9N	0	0	0	0	5	1	5	1.7 ±0. 1.	
σ		~	0	0	0	0	2.2	1.1	2.2	1.8± 0.4	
emerge	Small	°z	0	0	0	0	2	7	5	1.7± 0.4	
nplete (lts	ae	%	66 m	99. 2	66 r	99. 2¤	63. 3	56. 8	64	61. 4*	
Con	D D D	°Z	142	141	137	140	57	54	1 57	3 1 2 6	
	half emerge adult (N.P.)	% 0	0 0	0	0	0	2 2.2	3 3.2	3.4	2. 2.9	
	strict- upae)	%	0	0	_	0	8.7	11.6	4.5	8±1.7	
	Cons ed p from (P.L.	z o	0	0	0	0	2	н н 1	4	э. Э	
	iented ie (P.L.)	%		0		0	11.2	15.8	10.1	12.4±1. 5	
	Pign pupa	z o	0	0	0	0	10	15	<u>б</u>	0 11 	
зае	mall upae 3.L.)	~	0	0	0	0	2.2	2.1	3.4	2.6±\ .4	
nal pup	c c c c c c c c c c c c c c c c c c c	2 0	0	0	0	0	0	4 2	1.2 3	9±0	
Abnorr	Larval- pupal interm ate (N.	% 0N	0	0	0	0	9 1(00 00	10 1:	<u>б</u> ⁶ ,	
			9.3	9.2	9.3	9.2±0 32¤	56	0	7.4	4.3 <u>+</u> 2 2*	
	Norma pupae	°N N	14 2	14 1	13 7 9	14 9 0 .0	59 6	57 6	60 6	58. 6	
	Hours to the onset of pupa- tion		94	86	100	97.3±1. 8	100	110	105	105±2. 9¥	
	nted						8.9	7.4	4.6	0.3±3.	
arvae	Pigmei larvae	° N	0	0	0	0 0	17 1	26 2	13 1	19 ²	
ormal	ae all	%	0	0	0	0	2.2	2.1	3.4	2.6± 0.4	
Abr	Sma	2 Z	0	0	0	0 + ×	7	2	m	± 2.3	
	ae mal	%	66.3	99.2	66.3	-2-99.2-	75.6	68.4	78.7	74.1: 3*	
	Norr F larve	Ž	142	141	, 137	140	68	65	70	67.7	
star	Percen mortal ty	% Z 0	0 0	0 0	1 0.7	0. 3 0.2	0	0	1 1.1	0.0 0 m	
Third in	Hours to third ecdy- sis x)		176	170	172	172±1 .8	185	180	185	183.3 ±1.7¥	
ıstar	er- ent nor- ality	%	0	. 0.7	0	0.2	1.1	. 1.1	0	0.7	
cond ir	dy- r tit	~ 0	9	2	0	2.7 (.8 3	0	5	9	5±2 C ¥ 7	
Se	x) x	~ ~	0.7 12	0 12	0 12	0.2 ±1	2.2 15	1.1 15	2.2 16	H. 15 H. 15H	
ıstar	t Perc is mor	z o	1 (0	0	3 O.	8	н Т	5	1 1 2	
First ir	Hours to first ecdysi (mear x)		76	74	72	74±1.1	06	86	06	88.7±:	
	ы Ц	%	98.8	66.3	98.6	98.8± 0.2¤	85.7	88	81	85±2. 1§	
	Hatch eggs	°N N	143	142	138	141	06	95	68	91.3	
	No. Of egg laying		145	143	140	142.6± 1.2¤	105	108	110	107.7± 1.5§	
	Inne for com- Jeting 3ono- rophic	cycle	95	86	100	97.7±1. 5¤	88	86	82	85.3±1. 3*	
	Rep- licate		_	=	=	Total avr.	_	=	=	Total , avr. 8	
	Feeding medium provide d		Standard diet			Control group	Standard diet + 1.8% <i>Melia</i> 22edarach iruit extract.			Group I	Standard diet

	Time			Fir	irst instar	r S	econd inst	tar Th	hird insta	2		A	bnorma	l larvae	-			Ak	onormal	pupae	-			-	ă C	omplete dults	: emerge	d Abi	normal a	dults		
re- quired No. Of H for No. Of el com- egg egg ggno- ggno-	No. Of H Reg egg 3 laying	I U	atchir ggs	ng x) (⊒ sis ec to It x)	ours o first Pi cdy- cc cdy- cc s m nean it)	H er-ssent entorial-e v ss(r) x x	lours ec- nd Per cdy- ty is ty mean	Ho rcent th ortali- ec sis x)	ours o nird Pe cdy- m s ty nean	nrtali-	vormal arvae	la Si	nall rvae	Pigme larvae	e ented	Hours to the onset of pupa- tion	Normal pupae	br.	irval- upal termedi	Small pupae (S.L.)	Pigm	inted e	Constrict. ed pupae rom P.L.)	half emerg adult (ed p p N (N.P.)	Jormal	Small pupae	Sm adt	all Lits	Adults with abnor- mal wings	NO. Adu	Of lits
cycle			No	%	Z O	%	NO	%	Z O	N %	% %	z	% 0	ON N	%		No %	ž	%	% Z 0	z o		%	No	N %	% 01	No %	oN %	%	% Z 0	No	%
76 98	98		75	76.5 96	5 2	2.7 1	0 09	0 15	0 06	0 5	0 66	.7 2	2.7	21	28	145	40 53	.3 10	13.3	2 2.7	7 13 1	7.3	3 10.7	1	1.3 3	9 52	1 1	L.3 1	1.3	3 4	39	52
86 100	100		78	78 98	8	1.3	70 0	0 15	94 0	0	50 76	.9 2	2.6	15	19.2	145	51 65	4.9	11.5	2 2.6	9	1.5	5 7.7	2	2.6 4	.9 62. 8	1 1	1.3	1.3	1 1.3	49	62.8
I 80.7±2 100 .9 2	2 100 2	Ŧ	. 77.7	77.6± 68 0.6* ¢	8±1.2 1. 3	. 1:4 ±0. 1 4 :5	65±2 0.3 9¢	0. <u>15</u> 4 ±1	90.7 1.8¢	0	6 72	.3* 1.	7 2.2± 0.4	19	23.6±2	143.3± 1.7¢	46 59 .5*	.2±3	12840	7 2.2	2±0 10 1 .7 5	3.8±1.	0±9.9 7 9	. 1.7	2.1± 4 0.3 3	57± 4. 3.1 *	0.7 0	0.7	6.0	2.6	5± 64.	57±3 .1*
80	95		60	63.2 10	20	3.3 1	90 1	1. 15	96 1	1.7 2	88 46	0	0	28	46.7	195	26 43	ы. 2	3.3	0	24 4		6.7	7	1.7 2	5 41	0	0	0	1 1.7	25	41.7
75 10	10	0	61	61 10	2 00	3.3 1	95 2	3. 3. 19	98 2	3.3 2	5 41	0	0	30	49.2	190	24 39	6. 1	1.6	0	24 3	9.3	8.6	7	1.6 2	.3 37. 3 7	0	0	0	2 3.3	3 23	37.7
72 93	63		58	62.4 98	8	5.2 2	00 1	1. 7	1 00	1.7 2	0 34	.5 0	0	33	56.9	190	17 29	3 3	5.2	0	28 4	3.3	8.6	0	0 1	.7 29. .7	0 0	0	0	1 1.7	, 17	29.3
75.7±2 96 .3	96	±2.:	1 59.7	62.2± 95 0.6 .7	9.3±0 2. '¢ 3	. 3.9± 1 0.64 .5	95±2 3'''' 1.3	2. 19 12± 19 1 .2	98±1 1.	2.2 ±0. 2 5	24.3 40 3.1	1.7± 0 5 0	0	30	50.9±3	191.3± 1.7""	22. 37 3 .2	.3±4 2	3.4±1 .02	0	25 4	2.5±2.	8.4±0	. 0.7	1.1 2	11. 36.2 * ±3.6	0	0	0	1. 2.2 3 0.5	t± 21.	36.2 ±3.6
	_															ć		_			_		_			97.			_		_	_
ficantly	₫ sg	<u></u>	Ifferer	uy as nt fro	m gr	onp .oup	I, II&			ה ס	dho	ar	- 																			
ficantly	đ	đ	ifferer	nt fro	m gr	dno.	Π																									
ficantly	ťl	σ	ifferei	nt fro	m gr	dno.	II&III																									
ficantly	ťΙγ	đ	ifferei	nt fro	m th	ie coi	ntrol g	group	-																							
ficantly	tly	σ	ifferei	nt fro	m th	ie coi	ntrol g	group	o, gro	I dn	м С	dno.	Ξ.																			
ficantly o	itly o		ifferei	nt fro	m th	ie coi	ntrol g	group	lg & gi	dno.	п																					
ficantly (itly e	Ē	ifferei	nt fro	m gr	dno.	Ι																									
ficantly	fly	σ	ifferei	nt fro	m gr	dno.	I & II																									

www.openaccesspub.org JPAE

CC-license

DOI: 10.14302/issn.2637-6075.jpae-19-2586 Vol-1 Issue 2 Pg. no.- 40

	Df normal Is	%	98.6	6 0 .3	9 9 .3	99.1±0. 2¤	74.6	71.2	73.4	73.1±1 §	65.8
	No. c ad ul	Å	137	143	135	138	26	94	94	95	79
lts	ults th nor- ngs	%	0	0	0	0	1.5	2.3	1.6	1.8±0 .2	1.7
al adu	Ad wit ma wit	z o	0	0	0	0	2	e	2	n n	2
Abnorm	Small adults	% Z 0	0	0	0 0	0	0	0 0	0	0	0 0
5	Small pupae	% Z 0	0 0	0	0	0	0	0 0	0	0	0
npiete ei ults	ormal	%	7 98.6	3 99.3	5 99.3	99.1± 3 0.2¤	74.6	71.2	73.4	73.1± 0.9§	65.8
ad Co	₩ d ₽	No	13.	14:	13	13	67	t 94	94	3 4 95	62
	half emerge adult (N.P.)	% Z 0	0 0	0	0 0	0	13 10	15 11.	14 10.	10.1 14 ±0.4 ~	10 8.3
	onstrict- d pupae om	%	0	0	0	0	1.5	3.8	1.6	2.3±0 .7	2.5
F	it is c	z o	0	0	0	0	2	ß	7	0.5 3	ñ
	Pigmente pupae (P.	% Z 0	0 0	•	0	0	8 6.2	10 7.6	10 7.8	9. 7.2±0	5
				_			89.	8		ů.	
pupae	Smal pupa (S.L)	× z o	0	0	0	0	1 0	1 0	0	0. v	0
ormal	al- medi- N.L.)	%	0	0	0	0	6.2	4.5	4.7	5.1±0 .5	9.2
Abn	Larv pupä intei ate (Ŷ	0	0	0	0	∞	9	9	6.7	11
		%	98.6	66.3	69.3	99.1±0	84.6	82.6	84.4	83.9±0	74.2
F	N or m pupae	°N N	137	143	135	. 138	10	109	108	109	68
	Hours to the onset of pupa- tion		86	92	96	95.3±1 8	100	86	105	101±2. 1	135
a	hen ted 3e	%	0	0	0	0	7.7	11.4	94	9.5±0. 9	19
Ilarva	Pigm larva	No	0	0	0	0	10	15	12	12. 3	0
norma	vae	%	0	0	0	0	0.8	0.8	0	0.5	0
Ab	Sm	Ž	0	0	0	0.	н	H	T.	1. 0.7	3 83
	ae	%	98.5	6.66	6.66	99± 2¤	3.06	87.1	89.1	89± 2§	100
	L Nor	°N S	137	143	135	138	118	115	114	116	0.8
tar	Per- cent morta ity	% N	0 0	0	0 0	0	0	0 0	0	0	82 1
Third ins	Hours to third ecdysis (mean x)		174	168	170	170±1. 8	180	117	172	176.3± 2.3	
star	er- ent Ior-	%	0	0.	0	. 0.	0	8	∞	. o.	0
econd in:	iours b P econd c cdysis m mean ti	z o	28 0	26 1	24 0	26±1. 0 3	40 0	45 1	48 1	443± 0 .3¥ 7	60 0
0	H t ccent s ortality e x	%	1.4 1	0	0.7 1	0.7 ¹ 2	0.8	0 1	0.8	0.5	0.8
instar	n rst more Pe	z o	ч	0	H	±2 1	1	0	7	.2 0.	н
First	Hour to fir ecdy sis x)		62	75	72). 75.3±	06	88	92	± 90±1 *	86
	's ching	%	69.2	66.	98.6	99±1 3.7 2¤	93.5	63	91.4	92.6	88.9
	of Hat egg	°z	139	144	136	±2. 139	130	132	128	3± 130	120
	ed No. - egg hic layir	a	140	145	138	'±1 141: 1*	193	142	140	*±1 140. 0.9*	135
Time	e pleth trop	cycl	49	100	96	al 96.7 .8¤	06	86	84	al 86.7 .8*	84
	Rep caté		et I	=	≡	up avr.	a et	=	≡	Tot: avr.	a I
	Feeding medium provided		Standard die			Control grou	Standard dik + 1.8% <i>Melik</i> <i>azedarach</i> leaf extract.			Group I	Standard dit + 2.4% <i>Mell</i> i azedarach

Den Occess Pub

Freely Available Online

		Time				First ir	nstar	Sec	cond in	ıstar	Thir	d insta	F			Abnorm	al larvé	ae			4	Abnorm	al pupe	æ					0 10	Comple adults	ete em	erged	Abnor	'mal ad	ults		
Feeding medium provide	Repli- cate	d for d for com- pletir g gono troph	of No.	Hatceeggs	ching	Hour s to first ecdy- sis (mea n x)	Percent mortali	Hoi to sec ty ecd ty ecd (mé nx)	urs ۲۷- me ea عرب w	ercent	Hou to thir thir ecd' sis (me n x)	d Per y- mo ty	rcent ortali-	Normá		Small larvae	Pigm ed lar	ent- trvae o tr p	Hours to the breat l bf br uupa- ion	Normal		-arval- Jupal nterme ite (N.L.	di- di- (.	nall upae .L.)	Pigmer pupae (P.L.)	hted f	Con- tricted upae rom P.L.)	half eme adult (N.P.	t t ;	Morma	Di Sc	mall upae	Small adults	Ad witi abi	ults .h normal	No. C adui	Of ts
		ic cycle		Ŷ	%		% 0N		ž	%		°N N	%	No	%	% Z 0	° N	%		No No	~ ~	6 %	z o	%	» N	<u>,</u>	%	Ŷ	- %	°N N	z o	%	% Z 0	Ň	%	Ŷ	%
	=	78	138	125	90.6	96	1 0.	8 155	1	0.1	8 184	0	0	102	81.6	0	21 1	16.8 1	40	2 06	72 1	12 9.	.6	0	8	.4	4.8	12	9.6	78 6	2.4 0	0	0	4	3.2	78	62.4
	≡	88	140	122	87.1	92	1 0.1	8 165	5	0.5	8 186	0	0	100	82	0 0	20 20	16.4 1	35	87 7	71.3 1	11	0.7 0	0	15 1	2.3	. 4.1	11	6	76 6	2.3 0	0	0	ø	6.6	76	62.3
Group II	Total avr.	83.3 <u>1</u> 2.9	t 137.7 ±1.5*	7 122. · 3	88.9 ±0.9 *	95.3± 1.8¥	1 0.1	8 2.9	 5. Jt	7 0.:	5 184 1.20	0 † ()	0.3	92	82.3 ±0.5 (0	23 C	16.3± 1).2# ±	136.7 1.7¢	88.7 ⁷ 0	72.5± 1	12 0.	.8± .4# 0	0	9.7	7.9±2 4 2 7	l. 3.8± ' 0.7	: 11	9±0. 4	78 <u>±</u>	3.5 1.2 0	0	0	4.7	, 3.8± 1.4	78	6.3.5± 1.2*
Standard diet + 3.6% <i>Mel</i> i <i>azedorach</i> leaf extract.	- a	79	132	115	87.1	100	0	180	0	0	190	7	6.0	68	80	0	23 2	20 1	06	83 7	72.2	~ (<u>%</u>	0	6	80	4.3	12	10.4	71 6	1.7 0	0	0	4	3.5	71	61.7
	=	80	135	112	83	110	0	185	0	0	195	2	1.8	87	79.5	0	23 2	20.5 1	. 85	77 6	58.8 1	1	0.7 0	0	10 8	6	4.5	11	8.6	99	0 6.8	0	0	ъ	4.5	99	58.9
	≡	75	130	110	84.6	105	0	190	0	0	185	ц.	0.9	89.3	79.1	0	23 2	20.9 1	.80	7 77	70 1	6 01	.1 0	0	8 7	Э	5.5	10	9.1 (6.7 6	0 6.0	0	0	4	3.6	6.7	6.09
Group III	Total avr.	78±1 5	. 132.3 ±1.5	3 112. 3	. 84.9 ±1	105± 2.8'''	0	185 2.9′	24 0	0	190 2.9(1.2		79.5 ±0.3	0	23 ² C	20.5± 1).2** 2	18.5±	2 62	70.3± 1.8	6 O	.2± .7# 0	0	8 6	1±0.5	5. 4.8±	11	9.8± 0.4	88	0.5 0.8 0.8	0	0	4.3	3.9± 0.3	89	60.5± 0.8
F-test		14.5	6.7		49.9	36.4	-	106	5.6	18 7	3. 15.6	~	0.4		198. 8			72.8 3	167.3	m	313	÷.	6.8			1.1	4		5.4		0	0	0		1.9		395.5
L.S.D. test difi	fers siç	gnifi	cant	ly a	s cor	edw	Ired V	with	the	cor	Itrol	grc	dnc	at () < d	0.05																					
¤ Signifi	icantly	, diff	eren	ıt fr	om ĉ	Jrou	I,]	11&11	E.																												
* Signif	icantly	, diff	eren	ıt fr	om ĉ	nouÉ	III dr																														
§ Signif	icantly	diff	eren	it fr	om c	grou	sII dı	ĬΠλ																													
¥ Signifi	icantly	diff	eren	nt fr	om t	the	contr	ol gr	dno.	~																											
<i>""</i> Signif	icantly	, diff	eren	nt fr	om t	the	contr	ol gr	dno.	o, gr	dno.	л I 8	t gr	dnc	Π.																						
¢ Signifi	icantly	diff	eren	lt fr	om t	the e	contr	ol gr	dno.	8	grou	I dr																									

<u>CC-license</u>

DOI: 10.14302/issn.2637-6075.jpae-19-2586 Vol-1 Issue 2 Pg. no.- 42

Significantly different from group I & II

* * #

Significantly different from group I

and adults when compared with control groups .These abnormalities could be classified into larval, pupal and adult abnormalities.

Larval abnormalities as small larvae these were larvae which had normal appearance, but they had a comparatively small size. Table (1) showed that this category of the small larvae reached a percentage of 1.7% and 1.2% in groups I and II; respectively (Table 1) and a percentages of 2.8%, 1.9% in groups Ia, IIa; respectively (Table 2) in the first set of experiments. In the second set of experiments it reached a percentage of 2.8%, 2.2% in groups I, II; respectively (Table 3) reached a percentage of 4.4%, 1.7% in groups Ia, IIa; respectively (Table 4). In the third set of experiments, the percentage of the small larvae reached 2.6%, 2.2% in groups I, II; respectively (Table 5) and a percentage of 0.5% in group Ia (Table 6) the small larvae developed to produce small pupae and small adluts. Only adults belonging to groups I, II, Ia and IIa of the first, second and group I of experiments that were reared on diets containing 1.8% and 2.4% of Melia azedarach extractions had produced small larvae, small pupae and small adults (Fig 5 and 11).

2-Pigmented larvae, these were larvae of normal size that had inter-segmental patches of brown pigments (Fig. 1). Table (1) showed that the larvae attaining this abnormality had reached a percentage of 46.7%, 55%, 70.5% in groups I, II, III; respectively (Table 1) and percentages of 44.3%, 49%, 68.6% in groups Ia, IIa, IIIa; respectively (Table 2) in the first set of experiments .In the second set of experiments the larvae attained this abnormality were 75.9% in groups III and a percentage of 53.4%, 50.5% in groups II, I (Table 3) and reached a percentage of 44.1%, 47.2% and 67.1% in groups Ia, IIa, IIIa; respectively (Table 4). In the third set of experiments, the percentage of larvae that attained this abnormal pigmentation were 20.3%, 23.6%, 50.9% in groups I, II, III; respectively (Table 5) and a percentage of 9.5%, 16.3%, 20.5% in groups Ia, IIa, IIIa; respectively (Table 6).

Pupal abnormalities, larval-pupal intermediates, the puparia of these abnormal pupae were incomplete with parts of the last larval cuticle were still persisting (Figs. 4 and 5). These larval-pupal intermediates were produced from normal larvae (N.L.), they failed to complete the pupal period. They died after emerging

from the normal third larval instar. Table (1) showed that this category of the larval-pupal intermediates had reached a percentage of 5.3%, 9.6% & 10.5% in groups I, II, III; respectively (Table I) and the percentage of 4%, 8.1%, 9.3% in groups Ia, IIa, IIIa; respectively (Table 2) in the first set of experiment. In the second set of experiments the percentage of this category had reached. In the third set of experiments, the percentage of pupae that attained this larval-pupal intermediate were 9.9%, 12.8% and 3.4% in groups I, II, III; respectively (Table 5) and a percentage of 5.1%, 9.8% &9.2% in groups Ia, IIa, IIIa; respectively (Table 6).

2- Constricted pupa; These were fully formed pupae having conspicuous constrictions in their puparia; they were produced from pigmented larvae (P.L), hence failing to have the characteristic shape of the normal pupae and failing to emerge to the adult stage (Fig. 4). (Table 1) showed that this category of abnormal pupae had reached percentages as high as 36.3% in group III, 16% and 11.1% in groups II and I; respectively (Table 1) and a percentage of 10.5%, 13.5% and 20.9% in group I, II and III; respectively (Table 2) in the first set of experiments. In the second set of experiments the percentage of this category of abnormal pupae had reached a percentage of 12.1%, 17.5%, 33.3% in groups I, II, III; respectively (Table 3) and a percentage of 7.8%,10.4%,16.6% in groups Ia, IIa, IIIa; respectively (Table 4). The third set of experiment had shown a marked decrease in the percentage of these constricted abnormal pupae, it reached a percentage of 8%, 9.9%, 8.4% in groups I, II, III; respectively (Table 5) and a percentage of 2.3 %, 3.8%, 4.8% in groups Ia, IIa, IIIa; respectively (Table 6)

3- Pigmented pupae, these were pupae with an apparently normal appearance but possessing white pigments they were produced from pigmented larvae (P.L.). Table (1) showed that this category of abnormal pupae had reached a percentage of 35.6%, 39.1%, 37.8% in groups I, II, III; respectively and a percentage of 34.1 %, 35.3% and 48.0% in groups Ia, IIa, IIIa; respectively (Table 2) in the first set of experiments .In the second set of experiments the percentage of this category of abnormal pupae had reached a percentage of 38.3%, 36.5%, 42.7% in groups I, II, III; respectively (Table 3) and a percentage of 36.6%, 35.9% and 50.5% in groups Ia, IIa, IIIa; respectively (Table 4).

Figure 1. howing larvae with normal size but having brown pigments. X 26.1.

Figure 3. Showing larval – pupal intermediates. X31.2.

Figure 5. Showing; a- Small pupa, b-Crumpled pupa, c-Normal pupa with normal size. X53.3.

Figure 2. Showing larval–pupal intermediates. X30.5.

Figure 4. Showing a constricted pupa. X34.7.

Figure 6. Showing adult house fly *Musca vincina* that remains attached to its puparium. X32.

Figure 7. Showing: Head and a leg of the adult fly *Musca vicina* that remains attached to its light X 63.

Figure 8. Shows adult house fly *Musca vicina* with incomplete bent wings and abnormal prolonged legs.

Figure 9. Showing adult with incomplete broken wings. X31.

Figure 11. Showing small adult house fly *Musca vicina* with incomplete bent wings. X 30.

Figure 10. Showing adult house fly *Musca vicina* of almost normal size.

Figure 12. Showing adult *Musca vicina* of normal size with long crumpled wings and reduced abdomen. X 28.2.

The third set of experiments had shown a marked decrease in the percentage of these pigmented pupae, it reached a percentage of 12.4 %, 13.8%, 42.5% in groups I, II, III; respectively (Table 5) and a percentage of 7.2%, 7.9%, 8% in groups Ia, IIa, IIIa; respectively (Table 6) .It must be noted here that the larval-pupal intermediate and the constricted pupae were produced from the normal larvae. The pigmented pupae were produced from the pigmented larvae.

Small pupae were produced from small larvae (S.L.) they reached as high as 4.4% in group Ia (Table 4).

Adult abnormalities; certain morphological abnormalities were evident in the adults produced after treatment in groups I, II, III and Ia, IIa, IIIa.

These abnormalities seem to fall into two main categories:

1- Half emerged adults were produced from normal pupae (N.P.), they were adults that could not emerge completely and remain trapped in their puparia until they die (Figs. 6, 7), they reached in the first set of experiments a percentage of 5.8%, 6.4% and 6.4% in groups I, II and III; respectively (Table 1) and a percentage of 8.5%, 6.5% and 4.6% in groups Ia, IIa, IIIa; respectively (Table 2). In the second set of experiment it reached a percentage of 6.9%, 9.4% & 4.2 % in groups I, II, III; respectively, (Table 3) and a percentage of 10.2%, 9.1% & 6.7% in groups Ia, IIa, IIIa; respectively (Table 4). In the third set of experiments, the percentage of this abnormal adults were 2.9%, 2.1% and 1.1% in groups I, II, III; respectively (Table 5) and percentages of 10.8%, 9% & 9.8% in group Ia, IIa and IIIa; respectively (Table 6)

2-Adults of relatively small size and possessing different shapes of wings they were produced from small larvae and small pupae. Figures (8- 13) and tables (1-6) demonstrated emerging one winged adults in addition to variety of abnormalities ranging from adults with crumbled incomplete bent to adults with broken wings.

Discussion

The results obtained from the experiments conducted herein indicated the retarding effect of the fruits and leaves extracts of *Melia azedarach* on the house fly *Musca vicina* at different ages 24, 48 and 72 hours, when they were treated with various

concentrations of Melia azedarach extracts mainly 1.8% 2.4% and 3.6%. The results represented in tables (1-6) indicated the effect of Melia azedarach extracts on the different ages of females Musca vicina which accelerated egg deposition thus the time required for completing the first gonotrophic cycle was decreased and the number of deposited eggs was slightly decreased. It is noticed that *Melia azedarach* extracts at the different doses used; affect the hatchability of eggs which was decreased. Similar observations were obtained by Riddford and Williams [21] in their work on Silk-worm Hyalophophra cercropi by using JHa. Keller [22] reported that the reproductive potential of Diaprepes abbreiatus was reduced by aerial application of JH-6040, plus oil. The JHa reduced the hatchability of eggs and the oil detached them from the leaves of the litters.

Mehrotra and Gujar [18] found that azadirachtin reduced fecundity and reproduction of Spodoptera litura. Heyde et al. (1984)[23] observed a marked reduction in the fecundity of hemipterous rice pests when adults were treated with 3% neem oil .Chiu et al. [24] noticed that oviposition deterrence by extracts of Melia toosendan for a number of Lepidopteran species. Coudriet et al. [25] found that ethanolic extracts of neem seed reduced oviposition of sweetpotato fly, Wilps [26] studied the effect of Bemisia tabaci. azadirachtin on larval development, pupation of Musca domestica. He found that the number of eggs deposited on azadirachtin treated substrate was much less than on the control. Also, he noticed damaging in Musca's larvae and adults. He indicated that azadirachtin seed kernel extracts (NSKE) could be used as effective inhibitors of growth and development in autogenously insects . Akhter et al. [27] observed the egg laying capability after using two preparations of Nicotine dusts against the 3rd instar larvae of the house fly Musca domestica. They found that the egg laying capabilities ranged from 30.4 to 35.8 egg/ fly at the highest doses of Nicotine whereas the same concentrations inhibit the hatching of at least 96.6 and 64.2 egg/fly.

Sterility was indicated by Sukumar [28] when using the extracts of air dried leaves and roots of *Catharanthus roseus* in both males and females *Musca domestica* .Rice and Coat [29] treated adults of *Musca domestica* and their eggs with mono-terpenoids to determine the topical fumigant and ovicidal activity of

each compound. Structural activity relationships were evaluated with the toxicity data and comparisons were made between monocyclic, aromatic, a cyclic aliphatic, monocyclic aliphatic to determine the toxicity differences involving the skeletal structure amount of saturation, and associated functional groups of monoterpenoids. They found that ketones were less toxic than an analogous aldehyde, in the topical, fumigant and ovi-cidal bioassays. Saxena et al. [30] noticed that topical treatment of Musca domestica L. with the phytochemical plumbagin in doses of 0.005-5 Mg, prevented oocyte development and drastically affected fecundity and fertility in adults. Also, treatment of 'Wandering" larvae was less effective as the compound only affected fertility, not fecundity .It is clear from the data cited in tables (Ia-6a) that oral administration of Melia azedarach to the adult house fly causes prolongation in the life span of the larval instar of the first generation .Similar observations were obtained by Supavarn et al. [31] in their work on Aedes aegypti. Jhansi Rani [32] observed a delay in development of larval-pupal and pupal-adult intermediates of Corcyra cophalonica when insects were treated with lower concentrations of kernel .Koul [33] found that application of Azadirachtin on various stages of Dysdercus koenigii and Spodoptera littura larvae caused prolongation in the developmental period wing deformities, development of wingless adults and larval mortality .Koul [34] studied the effect of azadirachtin on blowfly Calliphora vicina by injection. They found that azadirachtin prolonged the 3rd larval instar and the pupae had a lower body weight than in the control also many of the pupae showed malformations. Higher doses caused mortality both in larvae and pupae and only a few adults emerged.

Hashem and Youssef [7] studied the effect of methanolic extracts of leaves and fruits of *Melia azedarach* L. on the house fly *Musca vicina Macq.* They found that the reaction of various instars to the concentrations of *Melia azedarach* extractions is doses dependent. The metamorphosis was retarded and the developmental periods of the larval stages were prolonged. They showed that the younger instars were strongly affected by lower concentrations while the older ones were less affected. They noticed that the fruit extract was more effective on the larvae than that of

leaves. They also recorded that the larvae, pupae, and the adults displayed morphological abnormalities as well as pronounced anomalies .It may he reported here that the *Melia azedarach* extract was considered as the main factor controlling the period of the larval stages. It was evident that the prolongation in the larval life span which occurred as a result of the exposure to *Melia azedrarch* extraction had made a number of workers make use of *Melia azedarach* extractions as larvicides .

The insect growth regulating properties of petroleum ether extracts of 10 indigenous Indian plants (*Acorus calamus, Adhatoda, Vasica, Aristochia indica, Artemisia vulgaris. Azadirachta indica, Boerhavia diffusa, carum carvi, carum copticum, Ocimum basilicum and Ocimum sanctum* were tested at 0.01 - 10 ppm against 3rd instar larvae of *Culex pipiens fatigans*, and *Musca domestica* by Deshmukh and Renapurkar [35]. They found that Acorus calamus and Ocimum Sanctum inhibited the full development of 20% of the larvae of *Musca domestica* at 0.1 ppm. Also at 10 ppm extracts of all (10) plants produced 20-80% inhibition in *Musca domestica* with *Acorus calamus* and *Azadirachta indica* being the most potent.

El Sayed [36]; Nagvi et al. [37] found that the effects of azadirachtin, a triterpenoid extracted from neem (Azadirachta indica) seed were similar to those of insect growth regulators against the immature stages of the horn fly, Haematobia irritans the stable fly, Stomoxys calcitrans and the house fly, Musca domestica. They noticed that, when an ethanolic extract of ground seed was blended into cow manure, the LC50 and LC90 were 10.5 and 20.2 ppm; respectively for house flies larvae. The pesticidal properties of juliflorine and Margosano were determined against 3rd instar larvae of Musca domestica by Jahan et al. [38]. The teratogenic effects of these pesticides on larvae, pupae and adults were observed. The LC50 was found to be 0.05% and 0.0018% for juliforin and Margosan-o, respectively .The toxicity and abnormalities produced by neem fraction and deltamethrin against second instar larvae of Musca domestica L. were recorded by Naqvi et al. [39]. They found that LD20 of dektamethrin (25 WP) and a neem extract after 24 hours treatment were 1.56% and 13.5%; respectively. Naqvi et al. [40] studied the toxicity of the pyrthroid Coopex 25 EC (permethrin) and a neem extract N-7 against the 3rd instar larvae of the

PenoccessPub

Freely Available Online

house fly. They found that the LD50 values of both compounds were 0.029% and 3.8%, respectively, which revealed that pyrthroid was more toxic than N-7. Both compounds caused morphogenic effects on various stages of *Musca domestica* including weight reduction and abnormal development .The first record of abnormality was the appearance of pigmented larvae. The nature of this pigmented area was uncertain .Chiu Shin-Foon [2] noticed appearance of black spots on the body of cabbage larvae soon after treatment with pure compounds isolated from the root bark. Shalaby *et al.* [41]; Radwan [8] observed abnormal pigmentation in the second and the third larval instars of the house fly *Musca domestica vicina* .The second abnormality was the appearance of small larvae.

Naqvi [42] found that treated larvae of Aedes aegypti with neutral fraction of winter neem leaves (NFD) produced larval-pupal intermediates .The appearance of small, pigmented and constricted pupae were additional abnormalities observed with various concentrations of Melia azedarach .Wilps [26] found that reduction in pupal weight of *Musca domestica* and pupal malformations were found to occur more frequently with increasing azadirachtin concentration in the diet. Koul [34] studied the effect of azadtrachtin on blowfly Calliphora vicina by injection. They found that azadirachtin prolonged the 3rd larval instar and the pupae had a lower body weight than in the controls, also many of the pupae showed malformations. Shalaby et al. [41] noticed a dark pigmentation in pupae of Musca domestica vicina when larvae of 2nd and 3rd instars treated with JH-1 .The appearance of constricted pupae was another observed abnormality, the pupae were fully formed hut had constrictions in their puparia, so that they failed to emerge to the adult stage .

It became obvious that the exposure of house fly females to *Melia azedarach* extracts in the treated groups I, II, III and Ia, IIa, IIIa, produced abnormal larvae which gave rise to abnormal pupae (Fig. 5) and emerged producing abnormal adults, small adults of normal appearance (Fig. 11) adults of normal size with broken wings and abnormal legs which could not deposit eggs and adults that could not emerge completely and remain concealed in the puparia until they died (Figs. 8-13). Koul [33] reported that azadirachtin caused a prolonged development period, wing deformities, non-plasticisation of wing lobes, development of wingless adults, and larval mortality on application to various stages of *Dysdercus koenigii* F. and against *Spodoptera littura* larvae.

Koul [34] found that the injection of azadirachtin to the larvae of the fly (Calliphora vicina) led to inhibition of adult emergence and the adults which succeeded to emerge were smaller and their wings, legs, and proboscis showed typical malformation and their abdomens was often very short .Jahan et al. [38] used petroleum ether extracts of (Clerodendrum inerme) leaves which afforded a compound that matched the clarodan compound (-)-3-epicaryoptin in physical spectral characteristics. They observed that the tested compound inhibited the development of larvae of Musca domestica and Culex quinquefasciatus. Hashem and Youssef [7] studied the effect of ethanolic extractions of leaves and fruits of Melia azedarach on the house fly Musca vicina. They found that the reaction of various instars to the concentrations of Melia azedarach extractions is dose dependent.

The insecticidal performance of neem products against most insects is not as dramatic as that of the synthetic insecticides and for equivalent effectiveness, considerably higher doses are required .Evidently the (JH-like substance) or the fruit and leaves extracts of Melia azedarach seems to be responsible for the normal development of the larvae, the appearance or disappearance of the larval characters and their normal or abnormal pupation. It became obvious from the results presented herein and which had been confirmed by the work of other authors, that the presence of Melia azedarach fruit and leaves extracts during the period of pupation interferes with the normal process of pupation and induces abnormal pupae and the emergence of anomalous pupal forms. These forms were found to attain some of the larval characters, in addition to the inhibition of the melanization process .The employment of the fruit extract of Melia azedarach is disrupting the course of morphogenesis and preventing the normal development of insects of medical and economic importance would point their importance as unharmful insecticides to human being .House flies Musca vicina are still the world's number - one vectors of human and domestic animals diseases. Today, we depend almost entirely on synthetic chemical pesticides. The

appearance of pesticide resistance had diminished our confidence in convential chemical methods. It is clear that the fruit and leaves extracts of *Melia azedarach* are effective against house flies *Musca vicina*.

References

- 1. Roush RT and Tabashnik BE eds. (1990). Pesticide resistance in arthropods. Chapman and Hall New York.
- Chiu Shin Foon (1986). Experiments on the practical application of chinaberry *Melia azedarach* and other naturally occurring insecticides in China. Proc. 3rd Int. Neem. Conf., Nairobi, 661-668.
- Jatwani MG and Srivastava KP (1983). A review of neem research in India in relation to insects.Proc.2nd Int. Neem Conf. Rauischholzhausen: 43-56.
- Schmutterer H and Zebitz CPW (1984). Effect of methanolic extracts from seed of single neem trees of African and Asian Origin, on *Epilachna vaivestis* and *Aedes aegypti*. Proc. 2nd Int Neem. Conf. (Rauischholzhausen, 1983), pp. 83-90.
- Chiu SF, Huang ZX, Huang DP, Bing-Qui H, Muchen X and MEI-Ying H (1984). Investigation into the toxic principles from seed kernels of Meliaceae and their effects on agricultural insects. China Res. Bull. 3: 1-32.
- Garcia E and Rembold H (1984). Effect of azadirachtin on ecdysis of *Rhodinus prolixus* J. Insect. Physiol., 30: 939-941.
- Hashem HO and Youssef NS (1991). Developmental changes induced by methanolic extracts of leaves and fruits of *Melia azedarach* L. on the house fly, *Musca domestica vicina* Macq. J. Egypt. Ger. Soc. Zool., 3: 335- 352.
- Radwan EH (1999): Effect of crude methanolic extracts of leaves and fruits of chinaberry tree *Melia azedarach L*. on the adult house fly *Musca domestica vicina macq* .MSc Thesis Faculty of Sci. Univ. of Alex.
- Hashem HO, Swidan MH and Fetyani AA (1991). Disrupting biological effects of methanolic leaves and fruit extracts of chinaberry tree, *Melia azedarach* L. on the development of the cotton leaf worm, *Spodoptera littoralis* (Boids). J. Egypt. Ger.

Soc. Zool., 4: 47-65.

- Rovesti L and Dese ICY (1991). Effectiveness of neem seed kernel extract against *Leucoptera malifoliella* Costa (Lepi., Lyonetiidae). J. appl., Ent., 111: 23 1-236.
- Ladd TL, Wathen JD and Klein MG (1984). Japanese bettle (Coleoptera: Scarabeidae):The effects azadirachtin on growth and development of the immature forms. J. Econ. Entomol., 75: 903-905.
- Schwinger M (1985). Uber die frassab-schreckende wirkung von Meliaceen inhaltsstoffen (Muls.) und andere insekten : Methoden versuchstechniken-Engebnisse. Ph. D. Thesis, Univ. of Hohenheim, FRG.
- 13. Klingel M (1985). Untersuchungen zur frass-und entwicklungsstoren-den Aktivitat von Meliaceeninhaltsstaffen: Entwicklung and Anwendung eines Testverfahrens für den agyptischen Baumwollwurm Spodoptera lilloralis. Wissenschafihiche Arbeit, Univ. of Hohenheim, R F G.
- Miller JA and Chamberlain WF (1989). Azadirachtin as a larvicidae against the horn fly, stable fly and house fly (Diptera: Muscidae). J. Econ. Entomol. V. 82 (5) pp. 1375-1378.
- 15. Garcia ES, UhI M and Rembold H (1986). Azadirachtin, a chemical probe for the study of the moulting process in *Rhodinus prolixus*.
- Bidmen HJ, Kraser G, Mbus P and Koolman J (1986).
 Effect of azadirachtin on blow fly larvae and pupae.
 Proc. 3rd Int. Neem. Conf, Nairobi, 253-271.
- Rembold H, Forster H, Czoppelt Ch, Rao PJ and Sieber KY (1984). Natural Pesticides from the neem tree and other Tropical plants pp., 153 (Schmuterer H, Ascher KPS eds.) Eschborn, GTZ.
- Mehrotra KN and Gujar GT (1984). Neem an insect growth inhibitor, Natn. Seminar on "Neemin Agriculture", IARI, April 12-13, 1983. Neem News 1, 1:6.
- Abraham CC and Ambica B (1979). Effect of leaf and kernel extract of neem on moulting and vitillogenesis in *Dysdercus cingulatus* Fabr. (Heteroptera: Pyrrhocoridae). Curr. Sci., 48: 554-556.
- 20. Snedecor GW and Cochran WG (1967). Statistical

methods.6th Edition, Ames, Lowa, the Lowa state university.

- 21. Riddford LM and Williams CM (1967). The effect of juvenile hormone analogues on the embryonic development of silk worm Proc. Nat. Acad. Sci., 57: 595-601.
- 22. Keller U (1985). Untersuchungen zur frass-und entwicklung schemenden Aktivitat von Meliaceeninhaltsstoffen: *Epilachna varivestis* im dual choice-Inochoice Test und in Langzeitversuchen Wissenschafiliche Arbeit, Univ. of Hohenheim, FRG.
- Heyde JVD, Saxena RC and Schmutterer H (1984). Neem oil and neem extracts as potential insecticides for control of Hemipterous rice pests, pp. 377- 390. In Proceeding, 2nd International Neem Conference, Rauisch-Holzhausen Castle, 1983. German Agency for Technical Cooperation, Eschborn.
- Chiu SF, Huang ZX, Huang DP, Bing-Qui H, Muchen X and MEI-Ying H (1984). Investigation into the toxic principles from seed kernels of Meliaceae and their effects on agricultural insects. China Res. Bull. 3: 1-32.
- Coudriet DL, Prabgaker N and Heyerdirk DE (1985). Sweetpotato whitefly (Homoptera: Aleyrodidae): Effects of neem seed extract on oviposition and immature stages. Envir. Ent., 14: 776-779.
- 26. Wilps H (1986). Growth and adult moulting of larvae and pupae of the blow fly Phormia terrae-Novae in relationship to azadirachtin concentrations Proc. 3rd Int. Neem. Conf., Nairobi 1986, pp. 299-314.
- Akhtar K, Rizivi SA and Naqvi SNH (1986). Effect on fecundity produced by nicotine dusts against 3rd instar larvae of *Musca domestica* L. (PCSIR strain). Pak. J. Entomol. Karachi, 1(2): 3 1-38.
- Sukumar K (1987). Effect of catharanthus alkaloids on the reproductive performance of the house fly, *Musca domestica*. Pesticide Div., Regional Res. Lab., Hyderabad, India. Entomol. 1987, 12:1, 13-15; 8.
- Rice PJ, Coats JR (1994). Insecticidal properties of several monoterpenoids to the house fly corn root worm (Coleoptera: Tenebrionidae and southern corn root worm (coleopterr: chrysomelidae). J. of Econ. Entomol. 1994, 87:5, 1172-1179;23.

- Saxena RC, Liquido NJ and Justo HD (1981). Neem seed oil, a potential antifeedant for the control of the rice brown plant hopper, *Nilaparvata lugens* Proc. 1st Int. Neem. Conf (Rottach-Egern, 1980): 17 1-188.
- Supavarn P, Knapp FW and Sigafus R (1974). Biologically active plant extracts for control of mosquito larvae. Mosq. News, 34 (4): 398-402.
- Jhansi Rani B (1984). Studies on the biological effecincy of deoiled neem (*Azadirachta indica* A.Juss) kernel against a few insects. M.Sc. Thesis Post Graduate School, IARI, New Delhi.
- Koul O (1985). Part 3.Azadirachtin interaction with development of *Spodoptera littura* Fab. Indian J. Exp. Biol., 23: 160-163.
- Koul O (1984). Azadirachtin I. Interaction with the development of red cotton bugs. Entomol. Exp. Apple., 36: 85-88.
- Deskmukh PB, Renapurkar DM (1987). Insect growth regulatory activity of some indigeneous plant extracts. Jai Res. Foundation, PO valvada, Umergoan District, Bulsar-396-108, Gujarat, India. Insect. Science and its application. 8:1, 81- 83;13.
- 36. El-Sayed EI (1982). Neem (*Azadirachia indica* A. Juss) seeds as antifeedant and ovipositional repellent for the Egyptian cotton leaf worm, *Spodoptera littoralis* (Boids.) Bull. Ent. Soc. Egypt, Econ. Ser., 49: 1982-1983.
- 37. Naqvi SNH, Ahmed A, Ahmed I, Khan MF, Azmi MA and Mohamed FA (1990). Toxicity and alkaline phosphatase inhibition effects of Soya" extract against 3rd instar *Musca domestica* L. larvae in comparison with Coopex (pyrethroid: permethrin + bioallathrin). Pakistan J. Entomol. Karachi, 5(1-2): 71-80.
- Jahan M, Ahmed I and Naqvi SNH (1990). Toxic and teratogenic effects of juliflorine and Margosan-O on the *Musca domestica* L. larvae Department of Zoology- Entomology, University of Karachi, Pakistan. Proceedings of Pakistan Congress of Zoology. 1990, 10: 293-320.
- 39. Naqvi SNH, Tabassum R, Jahan M,Yasmen N, Azmi MA and Matin Z (1994). Toxicity and abnormalities produced by neem fraction (NM) and deltamelthrin

Open Occess Pub

against second instar larvae of *Musca domestica* L. (PCSIR Strain). Proceeding of Pakistan-Congress of Zoology. 14: 283-290; 31.

- 40. Naqvi SNH, Jahan M, Tabassum R, Qamar SJ and Ahmed I (1995). Toxicity and teratogeny caused by Coopex 25 EC and a neem extract (n-7) against 3rd instar larvae of *Musca domestica* L. PAK. J. Zool., 27 (1): 27-31.
- Shalaby AM, E1-Zayat MA, Abd EI-Ghaffar H and Youssef NS (1988). The effect of juvenile hormone on *Musca domestica* vicina Macq, Follia Morphologica. 3: 268-285.
- 42. Naqvi SNH (1986). Biological evaluation of fresh Neem extracts and some Neem components, with reference to abnormalities and esterase activity in insects Proc. 3rd Int. Neem .Conf, Nairobi, 1986, pp. 315-330.